
Ward:
Efficiently Mitigating Transient
Execution Attacks using the Unmapped
Speculation Contract

1

Jonathan Behrens, Anton Cao, Cel Skeggs, Adam Belay, M. Frans Kaashoek, Nickolai Zeldovich

Transient execution attacks risk
leaking information

2

Linux maintains security using software mitigations

Software mitigations are
expensive

3

LEBench [SOSP ‘19] with/without mitigations on Linux

Goal: faster mitigations

Threat model

● Similar security to Linux

Main ideas

● Unmapped Speculation Contract

● Ward kernel design

4

 z = shared[y * CACHE_LINE];
}

 y = array[sysarg];

if (sysarg < SIZE) { // speculate taken

Memory

Cache

Transient execution attack
example

5

char array[SIZE];
int secret;
char shared[256 * CACHE_LINE];

// vulnerable system call code
// if sysarg >= SIZE

shared

y z

array secret

// userspace attacker code
secret = is_in_cache(&shared[0]);

Memory

Cache

Typical mitigation approach

6

char array[SIZE];
int secret;
char shared[256 * CACHE_LINE];

// vulnerable system call code
// if sysarg >= SIZE
if (sysarg < SIZE) { // speculate taken
 lfence(); // prevents speculation
 y = array[sysarg];
 z = shared[y * CACHE_LINE];
}

// userspace attacker code
secret = is_in_cache(&shared[0]);

sharedarray secret

Memory

Cache

Ward has a different approach

7

char array[SIZE];
int secret;
char shared[256 * CACHE_LINE];

// vulnerable system call code
// if sysarg >= SIZE
if (sysarg < SIZE) { // speculate taken

 y = array[sysarg];
 z = shared[y * CACHE_LINE];
}

// userspace attacker code
secret = is_in_cache(&shared[0]);

sharedarray secret

Page Fault

Secret not mapped...

Our observation: Unmapped
Speculation Contract (USC)

If some memory has never been mapped in the current address space...

CPU state should be unaffected by values stored there

8

USC is a good hardware-software
contract

● Allows most speculation

● Processors seem to be able to provide it:

“AMD processors are designed to not speculate into memory that is not valid in the
current virtual address memory range defined by the software defined page tables.”

— “Speculation behavior in AMD micro-architectures” white paper

9

Design

10

Split kernel to leverage USC

Ward extends Linux’s PTI:

● K-domain (“kernel domain”) has a
page table with all physical memory

11

0xfffffffffffff

0x800000000000

User

Kernel Text

Direct Map

0x000000000000

K-domain

The Ward kernel is split in half

Ward extends Linux’s PTI:

● K-domain (“kernel domain”) has a
page table with all physical memory

● Q-domain (“quasi-visible domain”)
has a page table with user mappings,
and safe kernel mappings.

12

0xfffffffffffff

0x800000000000

User

Kernel Text

0x000000000000

Direct Map

Q-domain

Syscalls start executing in the
Q-domain

● Any syscall or trap handler that
doesn’t access any secret data will
run entirely in the Q-domain.

● When this happens, we are able to
avoid many mitigations:

○ No need for page table swap

○ Don’t have to flush microarchitectural

buffers

○ Retpolines are not required

13

User

Kernel Text

Q-domain

...but sometimes we must
enter the K-domain

14

User

Kernel Text

Q-domain

...but sometimes we must
enter the K-domain

15

User

Kernel Text

Q-domain

User

Kernel Text

K-domain

world switch

World switches use two stacks

16

Q-stack

Q-stack

K-stack
2: memcpy

1: switch page table

Q-domain K-domain

Q-text K-text 3: resume
executing

Steps in a world switch…

1. Switch to K-domain page table
2. Copy Q-stack contents to K-stack
3. Resume executing

● Both code segments are compiled the
same

○ Matching instruction addresses and
stack layouts

● At runtime, Q-text has mitigations
patched out

○ lfence
○ verw
○ retpoline

Q and K Kernel

17

Q-stack

Q-stack

K-stack

Q-domain K-domain

Q-text K-text

Redesigning the kernel to avoid
switches

● Kernel data structures may mix secret and non-secret data

18

struct proc_public {
 proc_public* next;
 int pid;
 ...
};
struct proc_private {
 proc_public* pproc;
 uint64_t saved_regs[16];
 ...
};

struct proc {
 proc* next;
 int pid;
 uint64_t saved_regs[16];
 ...
};

Manipulating page tables
while in the Q-domain

● The physical memory pages backing the page tables, are themselves in the
Q-domain

● Powerful capability which enables Q-domain to...
○ Allocate anonymous memory
○ Create temporary mappings
○ Move kernel pages into/out of the Q-domain

19

Allocating memory without
world switches

● Have a per-core list of zeroed
memory pages mapped in the
Q-domain

○ Refreshed in batches

● Used for a variety of purposes:
○ Page tables
○ Q-domain kernel data structures
○ Lazy allocation of user memory

20

Buddy Allocator (4KB - 32MB)

Per-core free list (4KB)

zeroed alloc (4KB)

public alloc (4KB)Q-domain alloc (4KB)

Implementation

● Based on sv6 research kernel
○ 34K lines of C++ code, plus libraries

● Supports all relevant mitigations from Linux
○ Focus on Skylake (2015-19) microarchitecture

● Binary compatible with a subset of Linux’s syscall API
○ Can run unmodified binaries!

21

Results

22

Does Ward reduce overhead?

Ward configurations:

● Linux-style: Standard mitigations like the ones in Linux

● USC-based: Fast mitigations

● Baseline: All mitigations disabled

Workloads:

● LEBench
● git

23

Ward does better on LEBench

24

Ward does better on LEBench

25

Lo
w

er
 is

 b
et

te
r

Ward does better on LEBench

26

Lo
w

er
 is

 b
et

te
r

Ward does better on LEBench

27

Lo
w

er
 is

 b
et

te
r

Ward does better on LEBench

28

Lo
w

er
 is

 b
et

te
r

Git benchmark

● Ward also demonstrates application-level performance improvements

● Runtime for git status on a 100 MB repository:

Configuration Overhead

Linux-style 24.6%

USC-based 11.2%

29

Related Work: Spectrum of
defenses

30

● Pure software defenses like Linux’s PTI, retpoline, etc.

● Hardware-software co-designs like ConTExT [CoRR], and SpecCFI [SP ‘20]

● Hardware defenses: Intel/AMD designs, Specshield [PACT ‘19], NDA [MICRO ‘19], and
Speculative Taint Tracking [MICRO ‘19]

Open question: what is the best
way to mitigate attacks?

● Intel Cascade Lake (2019) has hardware mitigations for many attacks
○ Eliminates need for software mitigations
○ Toggling mitigations is almost free, but...

● New processor up to 33% slower executing LEBench syscalls
○ Compared to 2016 CPU model with same clock speed and core count
○ When mitigations disabled for both

Can hardware mitigations leverage the USC to get better performance?

31

Conclusion

● The Unmapped Speculation Contract
defines a division of responsibility
between hardware and software

● Using USC, Ward reduces the
performance cost of mitigations in
software

32

github.com/mit-pdos/ward

Contact: behrensj@mit.edu

