
This paper is included in the Proceedings of the
14th USENIX Symposium on Operating Systems

Design and Implementation
November 4–6, 2020

978-1-939133-19-9

Open access to the Proceedings of the
14th USENIX Symposium on Operating
Systems Design and Implementation

is sponsored by USENIX

Efficiently Mitigating Transient Execution Attacks
using the Unmapped Speculation Contract

Jonathan Behrens, Anton Cao, Cel Skeggs, Adam Belay, M. Frans Kaashoek,
and Nickolai Zeldovich, MIT CSAIL

https://www.usenix.org/conference/osdi20/presentation/behrens

Efficiently Mitigating Transient Execution Attacks
using the Unmapped Speculation Contract

Jonathan Behrens, Anton Cao, Cel Skeggs, Adam Belay, M. Frans Kaashoek, and Nickolai Zeldovich
MIT CSAIL

Abstract
Today’s kernels pay a performance penalty for mitigations—
such as KPTI, retpoline, return stack stuffing, speculation
barriers—to protect against transient execution side-channel
attacks such as Meltdown [21] and Spectre [16].

To address this performance penalty, this paper articulates
the unmapped speculation contract, an observation that mem-
ory that isn’t mapped in a page table cannot be leaked through
transient execution. To demonstrate the value of this contract,
the paper presents WARD, a new kernel design that maintains
a separate kernel page table for every process. This page table
contains mappings for kernel memory that is safe to expose
to that process. Because a process doesn’t map data of other
processes, this design allows for many system calls to execute
without any mitigation overhead. When a process needs ac-
cess to sensitive data, WARD switches to a kernel page table
that provides access to all of memory and executes with all
mitigations.

An evaluation of the WARD design implemented in the
sv6 research kernel [8] shows that LEBench [24] can execute
many system calls without mitigations. For some hardware
generations, this results in performance improvement ranging
from a few percent (huge page fault) to several factors
(getpid), compared to a standard design with mitigations.

1 Introduction
Over the last two years, transient execution has emerged
as a powerful new side-channel attack technique. Vulner-
abilities have proliferated [5, 12], with examples now in-
cluding Meltdown [21], Spectre [16], L1 Terminal Fault [4],
RIDL [29], Fallout [6], ZombieLoad [25], CrossTalk [23],
and SGAxe [28]. In contrast with conventional timing-based
side-channel attacks [17], where the victim must access its
data in a specific pattern in order to leak it, transient execution
attacks are more serious because they often allow an attacker
to precisely control which memory locations are leaked, in-
cluding memory that might not be accessed on the committed
execution path. This is of particular concern to OS kernels,
which have access to all of physical memory, and therefore
could leak data from any process through transient execution
bugs. In a public cloud, where it is common for mutually dis-
trustful tenants to share a single machine [30, 35], the threat
of transient execution is especially concerning.

A key challenge in addressing transient execution attacks
lies in minimizing the performance overheads. CPU and OS

designers have implemented a range of mitigations to defeat
transient execution attacks, including state flushing, selectively
preventing speculative execution, and removing observation
channels [5]. These mitigations impose performance over-
heads (see §2): some of the mitigations must be applied at
each privilege mode transition (e.g., system call entry and exit),
and some must be applied to all running code (e.g., retpolines
for all indirect jumps). In some cases, they are so expensive
that OS vendors have decided to leave them disabled by de-
fault [2, 22]. Recent processor designs have also incorporated
mitigations into hardware, which also reduces performance
compared to earlier processor designs that do not perform such
hardware mitigations.

To address the above challenge, this paper proposes a new
hardware/software contract, called the unmapped speculation
contract, or USC for short. USC allows the OS kernel to
significantly reduce the overhead of mitigating a particular
subset of transient execution attacks—namely, those that leak
arbitrary memory contents. The USC says that physical mem-
ory that is unmapped (i.e., physical memory that has no virtual
address) cannot be accessed speculatively. The benefit of USC
is two-fold. From the OS designer perspective, it provides
bounds on what data can be leaked through transient execu-
tion, and, as we show in the rest of this paper, can significantly
reduce the cost of mitigations. From the hardware designer
perspective, USC allows the CPU to keep many of the cur-
rent speculative execution optimizations and their associated
performance benefits. Most processor architectures already
adhere to USC; AMD states that “AMD processors are de-
signed to not speculate into memory that is not valid in the
current virtual address memory range defined by the software
defined page tables” [1, pg. 2], and Intel issued hardware and
microcode fixes for bugs that violate USC [14, 15].

To demonstrate the benefits of the unmapped speculation
contract, this paper presents WARD, a novel kernel architec-
ture that uses selective kernel memory mapping to avoid the
costs of transient execution mitigations. WARD maintains sep-
arate kernel memory mappings for each process, and ensures
that the memory mapped in the kernel of a process does not
contain any data that must be kept secret from that process. As
a result, privilege mode switches (e.g., system call entry and
exit) no longer need to employ expensive mitigations, since
there are no secrets that could be leaked by transient execution.
When the WARD kernel must perform operations that require
access to unmapped parts of kernel memory, such as opening
a shared file or context-switching between processes, it explic-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1139

itly changes kernel memory mappings, and invokes the same
mitigation techniques used by the Linux kernel today.

A key challenge in the WARD design lies in re-architecting
the kernel and its data structures to allow for per-process
views of the kernel address space. For example, a typical
proc structure in the kernel contains sensitive fields, such as
the saved registers of that process, which should not be leaked
to other processes. At the same time, every process must
be able to invoke the scheduler, which in turn may need to
traverse the list of proc structures on the run queue. This paper
presents several techniques to partition the kernel: transparent
switching of kernel address spaces when accessing sensitive
pages through page faults; using temporary mappings to access
unmapped physical pages; splitting data structures into public
and private parts; etc.

To evaluate the WARD design, we applied it to the sv6 re-
search kernel [8] running on x86 processors. The sv6 kernel is
a monolithic OS kernel written in C/C++, providing a POSIX
interface similar to (but far less sophisticated than) Linux. The
simplicity of sv6 allowed us to quickly experiment with and
iterate on WARD’s design, since some aspects of WARD’s
design require global changes to the entire kernel. Since sv6
is a monolithic kernel, our prototype was able to tackle hard
problems brought up by kernel services such as a file system
and a POSIX virtual memory system.

We evaluate the performance of our WARD prototype using
LEBench [24], which represents the most important system
calls for a range of application workloads: Spark, Redis, Post-
greSQL, Chromium, and building the Linux kernel. LEBench
allows us to precisely measure the impact of mitigations on
system calls that matter for applications. The most recent Intel
CPUs (such as Cascade Lake) include hardware mitigations
that cannot be fully disabled; however, some of these miti-
gations are not needed in WARD. To avoid the performance
overhead of such unnecessary mitigations, we run experiments
on the previous generation of Intel CPUs (Skylake).

WARD can run the LEBench microbenchmarks with small
performance overheads compared to a kernel without miti-
gations. For 18 out of the 30 LEBench microbenchmarks,
WARD’s performance is within 5% of the benchmark’s perfor-
mance without any mitigations (but at the cost of some extra
memory overhead). In the worst case, the overhead is 4.3×
(context switching between processes, where mitigations are
unavoidable). In contrast, standard mitigations incur a median
overhead of 19%, and a worst case of nearly 7×. To confirm
that LEBench results translate into application performance
improvements, we measured the performance of git status,
which incurs 11.2% overhead in WARD, compared to 24.6%
with standard mitigations.

One of the limitations of USC is that it does not cover
all possible transient execution attacks. In particular, attacks
where the sensitive information is already present in the archi-
tectural or microarchitectural state of the CPU are not covered
by USC. For instance, the Spectre v3a attack can leak the sen-

sitive contents of a system register (MSR), instead of leaking
sensitive data from memory. USC does not cover sensitive
data that is stored outside of memory, and WARD applies other
mitigations (e.g., as in Linux) to address those attacks.

2 Motivation
Transient execution mitigations harm kernel performance in
two ways. First, they place overhead on code execution by
disabling speculation. For example, the Linux Kernel uses a
retpoline patch to mitigate Spectre V2, which replaces each
indirect branch with a sequence of instructions that prevent the
CPU from performing branch target speculation [13]. Second,
these mitigations increase the privilege mode switching cost
incurred during each system call: upon entry into the kernel,
they either flush microarchitectural state or reconfigure pro-
tection mechanisms. For example, KPTI [11, 20] switches
to a separate page table before executing kernel code to pre-
vent Meltdown attacks [21]. Workloads that are system call
intensive (e.g., web servers, version control systems, etc.) are
impacted by this type of overhead, while non-kernel intensive
workloads see little performance impact [11].

Collectively, these and other mitigations can result in large
slowdowns. To better understand this problem, we run
LEBench [24], a microbenchmark suite of system calls that
impact application performance the most. We evaluate the
Linux kernel (version 5.6.13), comparing two configurations:
one where all mitigations are disabled and one where all are
enabled. Figure 1 shows the relative slowdown between the
two configurations for 13 kernel operations of LEBench that
don’t involve networking (i.e., without send, recv, epoll).
There are two sets of bars, representing two generations of
Intel CPUs: the older Skylake, and the newer Cascade Lake.
On the older Skylake CPUs, system calls that perform the
least kernel work are impacted the most (e.g., getpid()), but
a wide range of operations are impacted significantly (25%-
100% slowdowns). These observations are similar to those
made by Ren et. al.; they find that KPTI and Spectre V2 miti-
gations are the root cause of slowdowns in the Linux Kernel
over the last two years [24].

The newer Cascade Lake CPUs exhibit lower relative over-
heads, partly because the processors include hardware mit-
igations for some of the transient execution vulnerabilities.
However, these lower overheads are also in part due to the
newer Cascade Lake CPUs being slower in the baseline case
when software-controllable mitigations are disabled. Figure 2
shows the performance of the microbenchmark on Cascade
Lake (Intel Xeon Silver 4210R) relative to the earlier Skylake
CPU (Intel Xeon E5-2640 v4). Our experiment uses CPUs
with identical clocks (2.4 GHz), and nearly identical other
hardware (Dell PowerEdge T430 vs. T440), which allows the
comparison to be meaningful. The results demonstrate that,
although the new CPU is faster at some microbenchmarks, it is
slower for many others: e.g., context-switching is about 20%
slower. Although it is impossible for us to separate slowdowns

1140 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

ge
tp

id
co

nt
ex

ts
w

itc
h

fo
rk

fo
rk

-c
hi

ld
th

rc
re

at
e

th
rc

re
at

e-
ch

ild
bi

g
fo

rk
bi

g
fo

rk
-c

hi
ld

hu
ge

fo
rk

hu
ge

fo
rk

-c
hi

ld
sm

al
lw

ri
te

sm
al

lr
ea

d
sm

al
lm

m
ap

sm
al

lm
un

m
ap

sm
al

lp
ag

e
fa

ul
t

m
id

re
ad

m
id

w
ri

te
m

id
m

m
ap

m
id

m
un

m
ap

m
id

pa
ge

fa
ul

t
bi

g
re

ad
bi

g
w

ri
te

bi
g

m
m

ap
bi

g
m

un
m

ap
bi

g
pa

ge
fa

ul
t

hu
ge

re
ad

hu
ge

w
ri

te
hu

ge
m

m
ap

hu
ge

m
un

m
ap

hu
ge

pa
ge

fa
ul

t

0

1

2

3
R

el
at

iv
e

ru
nt

im
e

Skylake Server
Cascade Lake Server

Figure 1: Linux slowdown due to mitigations on LEBench, for two generations of Intel CPUs: Skylake and Cascade Lake.

ge
tp

id
co

nt
ex

ts
w

itc
h

fo
rk

fo
rk

-c
hi

ld
th

rc
re

at
e

th
rc

re
at

e-
ch

ild
bi

g
fo

rk
bi

g
fo

rk
-c

hi
ld

hu
ge

fo
rk

hu
ge

fo
rk

-c
hi

ld
sm

al
lw

ri
te

sm
al

lr
ea

d
sm

al
lm

m
ap

sm
al

lm
un

m
ap

sm
al

lp
ag

e
fa

ul
t

m
id

re
ad

m
id

w
ri

te
m

id
m

m
ap

m
id

m
un

m
ap

m
id

pa
ge

fa
ul

t
bi

g
re

ad
bi

g
w

ri
te

bi
g

m
m

ap
bi

g
m

un
m

ap
bi

g
pa

ge
fa

ul
t

hu
ge

re
ad

hu
ge

w
ri

te
hu

ge
m

m
ap

hu
ge

m
un

m
ap

hu
ge

pa
ge

fa
ul

t

0.0

0.5

1.0

R
el

at
iv

e
ru

nt
im

e

Cascade Lake / Skylake

Figure 2: Performance regression on the newer Cascade Lake CPU, compared to the older Skylake CPU, for LEBench on Linux, with all software-controllable
mitigations disabled.

due to mitigations from speedups due to architectural improve-
ments, the results suggest that the overheads of mitigations
implemented in hardware (e.g., for Meltdown, L1TF, or MDS)
could still be significant. 1

3 Goal and threat model
WARD’s goal is to reduce the performance cost of mitigations
for transient execution attacks. In principle, WARD’s tech-
niques can reduce not only the cost of software mitigations,
but also allow processor designers to avoid costly mitigations
in hardware. Practically, however, it is difficult for us to
disable hardware mitigations in the newest processors. There-
fore, this paper focuses on reducing the overhead of software
mitigations, and experimentally measures their effect on the

1One indication that this regression may be related to hardware mitigations
is that measured branch mispredictions are around 40% higher on LEBench.

previous generation of CPUs, where we can avoid mitigations
altogether. We hope that WARD’s design can allow processor
designers to regain some of the absolute performance lost due
to hardware mitigation costs.

Our threat model targets scenarios where the adversary and
the victim are both running code on the same computer. This
might arise either in a server setting, where both are running
on a cloud computing platform, or in a client device, where
the adversary code is a malicious application or web site.

Canella et al. [5] discuss transient execution attacks in de-
tail, but the salient points of the attack boil down to four steps.
First, the processor speculatively executes some code, which
accesses sensitive data that the victim wants to keep secret.
Second, during the speculative execution, the processor up-
dates microarchitectural state in a way that depends on the
sensitive data (e.g., bringing in cache lines into a shared L3

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1141

cache whose addresses depend on the sensitive data). Third,
the processor aborts the speculative execution, but does not
fully roll back all of its side effects (e.g., changes to the L3
cache), because doing so would be prohibitively expensive in
hardware. Fourth, the adversary observes these side effects
(e.g., using timing measurements), which allows the adversary
to infer the sensitive data.

What makes transient execution attacks challenging to miti-
gate in an OS kernel is a combination of two factors. The first
is that an adversary can trigger an OS kernel to speculatively
execute code that leads to leakage of sensitive data. Even
though the adversary cannot inject their own code to execute
in the kernel, the adversary can often have significant influ-
ence on what existing kernel code gets executed in speculative
execution, by specifying particular system call arguments or
setting up micro-architectural CPU state such as the branch
predictor. The second factor is that an OS kernel has access to
all of the state on the computer. This means that an adversary
running in one process can trick the kernel into leaking state
from any other process on the same computer.

Current OS kernel designs, such as Linux, have two ap-
proaches for mitigating transient execution attacks. The first
approach is to make sure that the CPU does not speculatively
execute any code that could end up accessing sensitive data.
This approach includes techniques such as retpolines and other
speculation barriers. The second approach is to make sure that
sensitive data is flushed from microarchitectural state, such as
flushing CPU caches and buffers when returning from a sys-
tem call or when context-switching between processes. Both
incur significant performance overheads.

Transient execution attacks can leak data across many pro-
tection domain boundaries, such as leaking secrets from the
kernel to an adversary’s process, or leaking secrets from one
process to a different process, or even leaking secrets within a
single process that implements its own internal protection do-
mains. Much like in the Linux kernel, the focus of WARD is on
preventing leakage between processes, as well as preventing
leakage from the kernel to a process. WARD’s approach to pre-
venting cross-process leakage is the same as Linux (flushing
state), but WARD has a novel approach for efficiently pre-
venting kernel-to-process leakage of memory contents, as we
describe in the next section.

Although WARD addresses all known transient execution
attacks, the focus of this paper is on attacks that allow the
adversary to leak the contents of arbitrary memory, which is
especially important in an OS kernel. WARD handles other
transient execution attacks, such as leaking the contents of
sensitive data already present in the CPU (e.g., x86 MSRs), in
the same way as Linux does.

Attacks that do not leverage transient execution to leak data
are also out of scope for this paper, since they are orthogonal to
the key challenge of transient execution leakage. In particular,
we do not consider attacks that leverage physical side channels
(such as Rowhammer or RAMbleed), cache side channels

(such as cache timing attacks), power side channels, etc.

4 Approach: Unmapped speculation contract
WARD’s design for mitigating transient execution attacks relies
on page tables. Specifically, if a page of physical memory is
not referenced by any entry in the current page table or TLB,
speculative execution cannot access any sensitive data stored
in that page, because the page doesn’t have a virtual address
to access it by.

A contribution of this paper lies in articulating a hard-
ware/software contract—which we call the unmapped specula-
tion contract—that captures the above intuition. The contract
aims to provide a strong foundation for keeping data confi-
dential, which is typically stated as non-interference. Non-
interference can be thought of by considering two system
states, s and s′, that differ only in sensitive data, which should
not be observable by an adversary. A system ensures non-
interference if an adversary cannot observe any differences in
how the system executes starting from either s or s′.

Single-core USC. To formally state the unmapped specula-
tion contract, we start with a single-core definition. We use
A(·) to refer to the state of the CPU, including all architectural
and micro-architectural state, but excluding the contents of
memory, and we use M(·) to refer to the contents of mapped
memory, i.e., the contents of every valid virtual address based
on the committed page table in that state. We define the con-
tract by considering a single clock cycle of the processor’s
execution, step(·), which includes any speculative execution
done by the processor on that cycle, and require that unmapped
pages cannot influence it:

∀s,s′,
if A(s) = A(s′) and M(s) = M(s′),
then with S := step(s) and S′ := step(s′),
it must be that A(S) = A(S′)

In plain English, the definition considers a pair of starting
states s and s′ that should look the same, as far as speculative
execution is concerned, because they have the same CPU state
and the same contents of mapped pages. They might, however,
differ in the contents of some unmapped physical pages, which
contain sensitive data that we would like to avoid leaking. The
definition then considers the state of the CPU at the next
clock cycle (S := step(s) and S′ := step(s′) respectively), and
requires that the CPU architectural and micro-architectural
state A(·), which the adversary might observe, continues to be
the same in those two states. As a result, the microarchitectural
state could not have been influenced by any sensitive data not
present in M(s).

If the OS kernel does not change the mapped memory in
that clock cycle, M(·) remains the same, and the contract will
continue to hold on the next cycle too. However, if the OS
kernel changes the mapped memory, the contract allows spec-
ulative execution from that point on to use the newly mapped
memory, and the kernel will need to use other mitigations

1142 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

to defend against transient execution leaks from the newly
mapped memory, if necessary.

The contract specifies how the micro-architectural state,
A(·), can evolve, but does not say anything about how M(·)
can change. This is because the focus of the contract is on
transient execution, which cannot affect the committed ar-
chitectural state of the system; the contents of memory is
described by the ISA, since it is architectural state. In other
words, changing the memory requires committing the execu-
tion of some instruction, at which point this is no longer a
transient execution.

Multi-core USC. In a multi-core setting, the CPU state can
be thought of as consisting of per-core state (e.g., registers,
execution pipeline, and root page table pointer), which we
denote with Ai(·) for core i, and the uncore state (e.g., the
hardware random number generator [23]), which we denote
with U(·), shared by all cores. Similarly, since each core has
its own page table, we index the mapped memory by the core
i whose page tables we are considering, Mi(·). Finally, we
consider the multi-core system executing a clock cycle on
one core at a time, stepi(·). We assume that stepi(·) does not
change A j(·) for any i ̸= j. With this notation, the multi-core
contract says:

∀s,s′, i,
if Ai(s) = Ai(s′);U(s) =U(s′); and Mi(s) = Mi(s′),
then with S := stepi(s) and S′ := stepi(s

′),
it must be that Ai(S) = Ai(S′) and U(S) =U(S′)

This means that speculative execution on core i is allowed to
depend on the state of core i, the uncore state, and the memory
mapped by core i. This multi-core formulation allows transient
execution to affect both the core state Ai(·) as well as the
uncore state U(·), at the micro-architectural level. However,
transient execution cannot affect either of these states in a way
that depends on unmapped memory.

Although hardware threads appear to provide separate exe-
cution contexts, with a separate page table for each hardware
thread, they have extensive sharing of core resources. To cap-
ture that, we consider Ai(·) to include the state of all hardware
threads on core i, stepi(·) to include the execution of any hard-
ware thread on core i, and Mi(·) to be the union of memory
mapped by all of the hardware threads on core i (i.e., the union
of the page tables of the threads). With this model, the contract
allows leakage of mapped memory across hardware threads.

Benefits of the USC. The contract helps reconcile security
and performance of speculative execution. On the one hand,
hardware can keep the high performance provided by out-of-
order execution, because the contract allows almost all forms
of speculative execution, as long as data during speculative ex-
ecution is accessed through non-speculative TLB entries. On
the other hand, software can precisely specify what data can
and cannot be used for speculative execution, by configuring
page tables. For example, if the mapped pages never con-
tain sensitive data, then no mitigations are needed to defend

against transient execution vulnerabilities. Finally, because
OS developers expect page faults and TLB misses to be quite
expensive (compared to memory references), USC doesn’t
change their performance expectations: developers already
have adapted their designs to avoid excessive page faults or
TLB invalidations.

Although the contract is aspirational, one appealing property
of the contract is that modern computer architectures already
effectively aim to provide such a guarantee. AMD explicitly
states in bold font that their “processors are designed to not
speculate into memory that is not valid in the current virtual
address memory range defined by the software defined page
tables” [1, pg. 2]. Intel has no explicit position about this
contract, but it appears that they treat violations of this contract
as bugs to be fixed in hardware or microcode, as evidenced by
their fixes for Meltdown and L1TF, described below.

USC and attacks. The contract captures a common pattern
that emerges in many transient execution attacks: an adversary
can only leak micro-architectural state that is already present
on the CPU, as well as the contents of mapped memory, but
not the contents of memory that is not present in a page table.
As one example, consider the MDS family of attacks [6, 25,
29]. These attacks allow an adversary to trick the kernel
into leaking the contents of mapped memory, through careful
orchestration of transient execution. Linux prevents this class
of attacks by clearing CPU buffers when crossing the user-
kernel boundary. This is needed because, when executing
in kernel mode, all system memory is mapped and therefore
could be leaked through transient execution. The contract,
however, captures the fact that only mapped memory is at risk
with this attack. This allows for a more efficient mitigation of
such attacks, as we demonstrate in WARD, by avoiding kernel
mappings of sensitive memory.

In contrast to the example of MDS attacks, which leak
sensitive data from memory, the USC does not help mitigate
attacks that leak sensitive data already present in the CPU
state. For instance, the Spectre variant that leaks the contents
of x86 MSRs (Spectre 3a) is not precluded by the contract,
since the sensitive data being leaked is not present in memory
at all. As a result, an OS kernel must apply other mitigations
to deal with such attacks.

More generally, the contract helps categorize existing at-
tacks based on which part of the system state they leak, as
shown in Figure 3. For attacks that leak core or uncore state,
the contract has little to say in terms of how those attacks can
be mitigated, as shown in the “Mitigated by USC” column. As
a result, WARD defends against these attacks much in the same
way as Linux. In contrast, for attacks that leak the contents
of memory, the contract gives a more efficient mitigation ap-
proach: simply avoid mapping memory that contains sensitive
data. This allows WARD to efficiently mitigate attacks such as
some variants of Spectre and MDS.

As shown in the “Consistent with USC” column, all of the

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1143

Attack Leaked state Mitigated Consistent
by USC with USC

Spectre variants

Memory

Yes Yes
Meltdown Yes Yes (ucode)
MDS Yes Yes
PortSmash Yes Yes
L1TF Yes Yes (ucode)

Spectre variants
Core state

No Yes
LazyFPU No Yes
System reg. read No Yes

Spectre variants
Uncore state

No Yes
CrossTalk No Yes
SGAxe No Yes

Figure 3: Transient execution attacks categorized based on the state leaked
by the attack.

attacks in Figure 3 are consistent with the contract’s require-
ments on the underlying hardware. This is good in two ways.
First off, this means that none of the known attacks violate the
contract, and thus, the contract is a reasonable approach for
mitigating transient execution attacks. Second, this means that
USC can mitigate the class of attacks that it covers—namely,
attacks that leak memory contents.

There are two special cases: Meltdown and L1TF. When
originally discovered, these attacks bypassed the page table
protections and allowed an adversary to obtain the contents
of memory that was not mapped. In both of these cases, the
hardware manufacturer (Intel) considered them to be hard-
ware bugs, as evidenced by the fact that both of them were
fixed through hardware and microcode revisions [14, 15], as
confirmed by Canella et al. [5].2

5 Design
Under the assumption of the unmapped speculation contract,
this section describes how WARD can reduce the cost of miti-
gations for system calls. §5.1 provides an overview of WARD’s
design with subsequent sections providing more detail about
WARD’s switch between protection domains (§5.2), about the
mitigations used by WARD when mitigations are necessary
(§5.3), WARD’s kernel text (§5.4), WARD’s memory manage-
ment modifications (§5.5), WARD’s process management split
(§5.6), and WARD’s file system split (§5.7).

5.1 Overview
WARD’s design maintains two page tables per process. One
page table defines a process-specific view of kernel memory.
When a process is running with that page table, we say it is
running in its quasi-visible domain (or Q domain for short),
and with its Q page table. Following the unmapped speculation
contract, WARD assumes any kernel memory mapped by the

2Canella et al. state that some variants of the Meltdown attack, such as
Meltdown-BR, are still possible even with the most recent microcode. Those
variants, however, are bypassing software checks, rather than the hardware
page table, and therefore do not violate the unmapped speculation contract.

Public

Stack Stack Stack

Stack Stack Stack

Private

No
miti-
gat-
ions

With
miti-
gat-
ions

No
miti-
gat-
ions

With
miti-
gat-
ions

Text

User
space

Kernel
space

Q1 K1 Q2K2

Figure 4: Overview of WARD’s address space layout with two processes
(indicated by the colors green and purple). Each process has a Q and K
domain. Q domains have access to public data (the grey color) and per-
process kernel data; the white private region is unmapped kernel data. Each
domain also has its own stack and kernel text. In the Q domain, the kernel
text has no mitigations. The K domains map all memory, including sensitive
memory (indicated by red); all K domains have the same memory layout.
Data structures that are shared across processes, such as pipes or file pages,
can be mapped in multiple Q domains, as indicated by the yellow color.

Q page table can be leaked to the currently running process.
Instead of using mitigations to prevent leaks of kernel memory,
WARD arranges for the mappings in the Q page table to be
such that they contain no sensitive data of other processes.

When the process needs to access data that is not mapped
in the Q page table, it can switch to its other page table, which
maps all physical memory, including memory that contains
sensitive data. When a process is running with this page table,
we say the process is executing in its K domain with its K
page table. In its K domain, the process runs with the same
mitigations as Linux currently uses.

This design allows many system calls to execute in the Q
domain, with no mitigation overhead. As a simple example,
getpid does not access any sensitive data; it needs access to
only the kernel text and its own process structure. A more in-
teresting example is mapping anonymous memory: it requires
access to the process’s own page table and to the memory
allocator, but not other processes’ page tables or pages.

Figure 4 shows the address space layout in WARD in more
detail. Each process has a Q and K view of memory. When a
process is running in user space it runs in its Q domain (with
no secrets mapped in the Q page table). When a user process
makes a system call it enters the kernel but stays in its Q
domain. The Q domain maps public kernel memory, Q-visible

1144 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

kernel memory, the process’s Q domain stack, and the kernel
text without mitigations.

If a system call needs access to memory in the K domain,
WARD performs a switch from its Q domain to its K domain.
We refer to the switch from a Q domain to a K domain as a
world switch, because kernel code in a Q domain runs without
most mitigations and the kernel code in the K domain runs
with full mitigations. Furthermore, the process switches from
its Q domain stack to its K domain stack. The K domain, with
access to all kernel memory, can then execute the rest of the
system call with full mitigations.

Achieving good performance in WARD depends on avoiding
world switches. To reduce the number of world switches,
WARD maps kernel data structures that contain no sensitive
data into every Q domain. For example, all Q domains map
x86 configuration tables (IDT, GDT), some memory allocator
state, etc. On the other hand, kernel data structures that contain
application data, such as process memory or saved register
state, are not mapped into Q domains unless that process
should have access to that data.

5.2 World switch
One of the challenges in WARD’s design is that a system call
often does not know upfront whether it will need to execute
in the Q domain or in the K domain. For example, a read
system call might be able to execute purely in the Q domain,
or might need access to sensitive data from the K domain,
depending on the file descriptor that the process is reading
from, and depending on whether this Q domain already has
some sensitive data mapped or not. To support this, WARD’s
design allows a system call to start executing in the Q domain,
and switch to the K domain later as needed.

WARD allows the Q domain to trigger a world switch either
intentionally or transparently. If the code determines that
it must switch to the K domain, it can intentionally invoke
the function, kswitch(), to perform a world switch. When
kswitch() returns, the kernel thread is now executing in the
K domain, and has access to all memory. If the Q domain
needs access to specific sensitive data which might or might
not be already mapped, the Q domain can attempt to access
the virtual address of that data. If the data is already mapped
in the Q domain, the access will succeed, no world switch
happens, and the Q domain can continue executing. If the
data is not mapped, the Q domain triggers a page fault, which
transparently triggers a world switch. Once the page fault
returns, the kernel thread is now executing in the K domain,
as if it called kswitch(). Compared to making an intentional
call to kswitch(), the transparent approach incurs a slight
overhead for executing the page fault, but allows large sections
of the kernel to be kept completely unmodified, and allows
the Q domain to elide a world switch altogether if the data is
already mapped in the Q domain.

The above design requires that a kernel thread can start
executing in the Q domain and transparently switch to exe-

Transient execution vulnerability U/Q K Ctx

L1TF x x

V1 (Bound Check Bypass) x
V1.1 (Bounds Check Bypass Store) x
V3 (Meltdown) x
V4 (Speculative Store Bypass) x

V2 (Branch Target Injection) x x
Microarchitectural Data Sampling x x

(Fallout, RIDL, Zombie Load, etc.)

LazyFPU x
SpectreRSB x

PortSmash Not applicable
Load Value Injection Not applicable
Meltdown-PK (protection key bypass) Not applicable
Meltdown-BR (bounds check instr. bypass) Not applicable
V1.2 (Read-only Protection Bypass) Not applicable

Figure 5: The mitigations implemented in software by WARD.

cuting in the K domain. This means that any addresses that
the kernel thread is referencing, including pointers to data
structures, stack addresses, and function pointers, remain the
same. To achieve this, WARD ensures that the layout of the
Q domain and the K domain match. In particular, all data
structures in the Q domain must appear at the same address
in the K domain, and the kernel code (text) is located at the
same address (even though the code is slightly different, as
described in §5.4).

The stack requires particular care because a kernel thread
that is processing sensitive data in the K domain could inad-
vertently write that data to the stack. For example, a read()
system call from /dev/random needs to switch to the K do-
main to access the system-wide randomness pool. However,
the pseudo-random generator code might spill some of its state
to the stack, depending on the compiler’s choices. If the stack
is accessible from the Q domain, the sensitive data could in
turn be leaked during the next entry into the Q domain by any
thread within the same process. At the same time, if the K
domain stack was separate from the Q domain stack, pointers
to stack locations before a world switch would no longer work
after a world switch. To reconcile these constraints without
having to rely on any dedicated compiler support, WARD maps
a distinct kernel stack for each domain at the virtual address
range and copies the Q domain stack contents to the K domain
stack during a world switch.

5.3 Mitigations
Figure 5 shows the known transient execution attacks [5, 12],
organized by the mitigations needed to address those attacks
in WARD’s design. The columns (U/Q, K, and Ctx) indicate
where the mitigations are needed: respectively, while exe-
cuting in user-mode or Q domain; while executing in the K
domain; and when context-switching between processes.

The L1TF attack allows leaking the contents of the L1 cache

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1145

if there are partially-filled-in entries in the page table. We think
of this attack as a violation of the USC (see Figure 3), but a
simple microcode fix, as well as clearing unused page table
entries, makes the system agree with the USC, and avoids
the L1TF attack. Since L1TF allows leaking the contents of
any data, WARD applies the mitigations both in user-space, Q
domain, and K domain.

The next category of attacks requires no mitigations in either
user-space or Q domain. Specifically, Spectre variants that
bypass bounds checks require mitigation in the K domain,
since there is sensitive memory contents that could be leaked
as a result of a speculative check bypass. However, there is
no sensitive data that can be leaked in the Q domain, owing
to USC. Similarly, no mitigations are required on a context
switch, since these attacks can only leak data from the current
protection domain.

Meltdown also falls in this category, but for a different rea-
son. Meltdown allows an adversary to bypass the user-kernel
boundary check in the page table. WARD’s use of a separate
page table for the Q and K domains ensures that Meltdown
cannot leak any confidential data, since no confidential data is
available in the Q domain. Recent microcode from Intel fixes
the Meltdown attack in a way that avoids the need for software
mitigations.

The next category of attacks require mitigation both in the
K domain and on context switch. Spectre v2 and MDS attacks
can allow an adversary to obtain sensitive data either from the
OS kernel or from another process. However, no mitigations
for these attacks are needed in the Q domain due to USC: there
is no sensitive data to leak in the Q domain of the currently
running process.

For some attacks, such as LazyFPU and SpectreRSB, mit-
igations are only required on context switch, because the at-
tacks involve process-to-process leakage.

Finally, a number of attacks are not applicable to WARD’s
simpler design, in contrast to Linux. For example, WARD does
not support SGX, does not support running virtual machines,
and does not use certain hardware features (such as hardware
bounds-check instructions or protection keys).

5.4 Kernel text
Some of the mitigations involve changes to the executable
kernel code (text), such as the use of retpolines in place of
indirect jumps. These mitigations impose a performance cost,
but they are not needed when executing in the Q domain.

A naïve approach might be to compile the kernel code twice,
with different compiler flags for mitigations, and load the two
different kernel binaries in the Q and K domains respectively.
However, this would break WARD’s page fault triggered world
switches because after completing the switch, execution would
resume with the same instruction pointer and stack contents
from before the switch but neither would be meaningful in the
new text segment.

Instead we need the two version to have matching instruc-

tion addresses and stack layouts. WARD achieves this by
compiling the kernel only once, but then making two copies
of the code at runtime. One copy is mapped into all the K
domains, and the other into all the Q domains but at the same
virtual address as in the K domains. Switching between the
two is seamless.

At boot time, in a process inspired by Linux’s ALTERNA-
TIVE macro [9], WARD locates each call or jmp in the Q text
segment pointing to a retpoline thunk, and replaces them with
the instruction that retpoline emulates. One complication is
that indirect call instructions are only 2 or 3 bytes, compared to
the 5 that a direct call instruction takes. If we tried to pad with
a NOP instruction before or after, the pair would not execute
atomically, so instead we prepend indirect calls with several
repetitions of the CS-segment-override prefix, which is always
ignored in 64-bit mode.

5.5 Memory management
Memory allocation in WARD is complicated by the fact that the
contents of free pages may contain sensitive data. In particular,
if a page was freed by one process, its contents must be erased
before the page can be mapped in another Q domain. Zeroing
out pages on every allocation would be costly, in particular
when allocating kernel data structures, which do not otherwise
require the memory to be zero-filled.

To avoid the overhead of repeatedly zeroing kernel pages,
WARD implements a sharded allocator for kernel memory.
Each Q domain has its own pool of pages for allocation, and
the K domain keeps all of the kernel memory that is not part of
any Q domain. WARD transfers memory between these shards
in batches to amortize the world switch overhead. Keeping
a pool of kernel memory in a Q domain allows the kernel to
repeatedly allocate and free memory within a Q domain with
little overhead.

The other category of memory managed specially by WARD
is public memory. WARD maintains a single pool of public
pages, with separate functions, palloc() and pfree(), for
allocating and freeing in that pool. All public-pool pages are
mapped in every Q domain.

5.6 Process management
When the WARD kernel switches from executing one process
to another, it must perform a world switch, to ensure that
confidential data does not leak across processes (such as the
saved CPU registers that the kernel might save on the stack).
However, if a multi-threaded application is running, there is
no security reason to perform a world switch when switch-
ing between multiple threads in the same process—all of the
threads have the same privileges and have access to the same
process address space.

To avoid mitigation overhead when switching between
threads in the same process, WARD splits the process de-
scriptor, struct proc, into two parts. The first part stores
sensitive process state, such as the saved CPU registers, and is
not public. The second part stores metadata about the process,

1146 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

such as the PID, the run queue, the scheduler state, etc. This
part is public and is used by the scheduler when deciding what
thread to execute next. As a result, the scheduler can pick the
next thread without incurring a world switch. Furthermore,
if the next thread happens to be from the same process, the
context switch code can also avoid performing a world switch.
Existing scheduler policies that favor picking threads from the
same process mesh well with this approach.

5.7 File system
File system workloads involve access to several kernel data
structures, including the inode cache and the page cache (con-
taining file data). Inodes are challenging for WARD to deal
with because they are smaller than a page, so it is not feasible
to map them individually into a Q domain. However, achiev-
ing good performance for file system operations requires being
able to access an inode without a world switch. To reconcile
this conflict, we chose to make all inode structures public in
WARD, similar to our approach for splitting the proc struc-
ture above. If the inode had sensitive data (such as extended
attributes), that part of the inode structure would need to be
split off into a separate private structure, along the lines of
how we split off the part of the proc structure storing saved
CPU registers.

File data pages are not public, because their contents might
be sensitive. WARD implements an optimization that allows
it to access file contents without a world switch. In particu-
lar, after WARD checks the permissions on a file, it reads or
writes the contents of a file page by temporarily mapping the
corresponding physical page of memory into its Q domain’s
address space. This allows the Q domain to access that spe-
cific memory page without the risk of leaking other pages; as
a result, no mitigations or world switches are needed. When
the Q domain is finished with the file read or write, it unmaps
the page and issues a TLB shootdown, in case the file is later
truncated and the page gets reused for other data.

5.8 Pipes
Pipes are different from many of the other kernel data struc-
tures discussed so far in that their contents shouldn’t be visible
globally, but their state can be associated with multiple pro-
cesses at a time. WARD’s goal is to ensure that if a reader and
writer of a pipe run on different cores, then they don’t incur
world switches when they access the pipe. To achieve this,
we store a pipe’s data structures in shared memory regions
between Q domains. These shared regions are lazily mapped
into Q domains the first time a process accesses a pipe (doing
the mapping on fork would cause unnecessary overhead),
and unmapped when the last reference to the pipe within a Q
domain is closed.

When a pipe becomes full or empty, the caller blocks on a
condition variable. Subsequent reads or writes can observe
which processes are blocked and add them to the scheduler
run queue if appropriate. Neither of these operations requires
access to any secret data so no world switch is triggered until a

new process is scheduled. Thus, if the core remains idle until
the blocking thread is added back to the run queue, the cost of
a world switch is avoided.

5.9 Discussion
WARD’s design assumes that there are no secrets in the Q
domain that need to be hidden from the user-level process. For
many secrets, they can be protected by placing them in the K
domain, such as the seed of a system-wide randomness genera-
tor. However, address-space layout randomization (ASLR) for
the kernel address space is difficult to protect in this fashion,
because kernel addresses must be used in the Q domain, and
the addresses must match up between the Q domain and the
K domain in order for world switches to work. (Note that
the initial seed that is used to randomize layout could be pro-
tected in the K domain, but the resulting randomized layout
cannot be protected.) As a result, kernel ASLR in WARD is
susceptible to leakage of addresses through transient execution
side-channels.

Our WARD prototype does not include an optimized in-
kernel network stack, but a reasonable approach might be to
treat all network data as public, leaving it up to the application
to encrypt any sensitive information sent over the network.
This meshes well with the recent trends in widespread use of
TLS for network security, and allows for network operations
to achieve high performance in WARD because no mitigations
or world switches are required, and all network processing can
stay in the Q domain.

Hyperthreading is a source of many possible transient execu-
tion leaks, because a significant amount of microarchitectural
state is shared between the execution contexts. However, many
Linux systems continue to run with hyperthreading enabled,
despite these risks, because of the high performance over-
head they would incur if hyperthreading was entirely disabled.
WARD does the same.

6 Implementation
To demonstrate the feasibility of the WARD design, we imple-
mented a prototype of WARD starting from the sv6 research
kernel. The kernel is monolithic, implementing traditional OS
services such as virtual memory, processes and threads, file
systems, fine-grained concurrency using RCU-like techniques,
etc. The sv6 kernel, is written in C/C++, runs on x86 pro-
cessors (both AMD and Intel), and has decent uniprocessor
performance and great multicore performance and scalabil-
ity [8].

Kernel changes. WARD’s design affects most core kernel
subsystems, including the memory allocator, virtual memory,
context switching and the scheduler, and the file system. The
simplicity of sv6 allowed for rapid experimentation with kernel
designs to enable WARD, which would have been challenging
to do in a more complex kernel like Linux, since it is time-
consuming to make changes to core subsystems in the Linux
kernel, which would have made design iterations far slower.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1147

Transient execution variant Strategy Support

V1 (Bound Check Bypass) bounds clipping partial
V1.1 (Bounds Check Bypass Store) lfence partial
V1.2 (Read-only Protection Bypass) lfence n/a (no in-kernel software sandbox)
V2 (Branch Target Injection) retpoline yes

—"— speculation barrier yes
—"— return stack buffer filling yes
—"— disable spec before BIOS calls n/a (no calls to BIOS in WARD)

V3 (Meltdown) Kernel page table isolation (KPTI) yes
V3a (System Register Read) microcode yes
V4 (Speculative Store Bypass) disable spec. or ctx. switch yes
LazyFPU hardware-assisted save/restore yes
SpectreRSB return stack buffer filling yes
L1TF cache flush, no SMT n/a (no VM entry in WARD)

—"— no invalid PTEs yes
PortSmash no SMT no
Microarchitectural Data Sampling CPU buffer clearing yes
(Fallout, RIDL, Zombie Load, etc.) no SMT no
Load Value Injection lfence n/a (no SGX in WARD)
Meltdown-PK (protection key bypass) address space isolation n/a (no protection keys)
Meltdown-BR (bounds check instr. bypass) lfence n/a (no bounds check instructions)

Figure 6: Transient execution mitigations implemented in WARD.

To help partition the kernel data structures across Q do-
mains, we developed Warden, a tool for tracking down the
cause of world switches. Warden instruments page faults from
the Q domain that lead to a world switch, and records a stack
trace for each of them. Examining the profile of these world
switches allows the kernel developer to quickly understand
what kernel data structures need to be partitioned or sharded to
reduce the number of world switches, as well as the operations
that need to be supported on these data structures within a Q
domain. Although Warden identifies the data structures that
are causing world switches, it is up to the kernel developer to
identify an appropriate plan for partitioning the data structure
so that no sensitive data can leak through side channels.

To run applications on top of the WARD prototype kernel,
we changed the WARD system call interface, including system
call numbers, data structure layout, etc, to match that of Linux.
This allows unmodified Linux ELF executables to run on top
of WARD, and ensures that WARD implements (a subset of)
the same system calls that are available on Linux.

We modified sv6 to use PCIDs to reduce the cost of switch-
ing page tables (see §5.2). To improve TLB shootdown per-
formance, we modified sv6 to use Linux’s shootdown strategy.
This is important, for example, for removing temporary map-
pings in a read and write systems calls (see §5.7).

Mitigations. WARD implements side-channel mitigations for
known transient execution attacks [5, 12], as shown in Fig-
ure 6. WARD mostly copies the mitigation strategies and their
implementation from the Linux kernel [19]; the most inter-
esting exception is that WARD does not apply some of these
mitigations to the Q domain, as described in Figure 5.

For Spectre V1, WARD, adds an lfence instruction when

copying from user code, and when taking an interrupt, excep-
tion, and NMI entry. WARD uses bounds clipping in fewer
cases than Linux for two reasons: WARD has less code and
we haven’t performed a careful audit of the complete source
code. For Spectre V2, we compile WARD to use retpolines (by
specifying the “-mretpoline-external-thunk” flag to clang).
WARD also uses Linux’s FILL_RETURN_BUFFER macro to fill
the return stack buffer, and issues an indirect branch predictor
barrier IBPB instruction on a context switch. For Spectre V3,
WARD uses separate page tables (as described in §5.1) and
uses process-context identifiers (PCIDs) to avoid TLB flushes.

For Spectre V4, WARD issues an lfence on context switch.
(If WARD supported generating code at runtime, the JITs
would also have to be hardened.) For LazyFPU, WARD uses
the xsaveopt instruction to safe/restore floating point state.
For SpectreRSB, WARD fills the return stack buffer on con-
text switch. For L1TF, WARD avoids invalid PTEs. Like
Linux, WARD doesn’t address PortSmash; the default for the
Linux kernel is to allow SMT, and WARD does too. For mi-
croarchitectural data sampling attacks, WARD issues the verw
instruction for clearing CPU buffers.

Some attacks aren’t applicable to WARD, because WARD
doesn’t support virtualization, secure enclaves, and hardware
transactional memory; does not call into the BIOS; and does
not implement in-kernel software sandboxes such as BPF.

Like Linux, WARD also zeroes unused CPU registers on
kernel entry, to reduce the avenues of attack available to an
adversary. To determine whether mitigations are necessary,
WARD maintains a special variable called secrets_mapped
whose value is 0 in the Q domain and 1 in the K domain;
this allows the rest of the kernel code to determine if it needs
to perform mitigations just by using if (secrets_mapped)

1148 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

... (as long as interrupts are disabled, to avoid races). To
help evaluate the performance impact of side-channel mitiga-
tions, WARD’s implementation allows switching individual
mitigations on and off at runtime, rather than at compile time
or boot time.

To improve performance, a few system calls invoke the
world switch intentionally to avoid the extra overhead of a
transparent world switch. For example, open, and fork al-
ways invoke world switch intentionally. The read and write
system calls invoke a world switch intentionally when they
are reading or writing large amounts of data, since the cost
of a world switch is less than the cost of shooting down the
temporary mappings for that many file pages. A page fault
on a Copy-On-Write (COW) page also intentionally invokes a
world switch.

Lines of code. The WARD prototype consists of about 34,000
lines of C++ code (for kernel/ and include/), compared
to 24,000 lines of C++ code for the sv6 kernel that WARD
was derived from. git diff –stat reports roughly 17,000
lines of insertions and 5,000 lines of deletions between sv6
and WARD. It is difficult to further break down WARD’s lines
of code, since many aspects of WARD’s design required small
changes throughout the kernel’s source code. For example,
splitting up the kernel memory allocator required the use of
C++ placement new in many parts of the kernel. Similarly,
implementing the Linux binary compatibility layer required
making changes to the implementation of many system calls.

7 Evaluation
To demonstrate the benefits of WARD’s design, this section
answers the following questions:

• Do WARD’s techniques reduce the overhead of mitigations
for system calls? (§7.2)

• How do mitigations affect the cost of a world switch?
(§7.3)

• What are the memory overhead associated with WARD’s
design? (§7.4)

7.1 Experimental methodology
To answer these questions, we consider three different config-
urations of WARD:

• Baseline: WARD with no mitigations against side channels.

• Linux-style: WARD with standard mitigations against side
channels, mirroring the approach taken by the Linux kernel.
This configuration does not use separate Q domains; all
system calls directly enter the K domain.

• USC-based: WARD with fast mitigations that take advan-
tage of the split between the Q domain and the K domain,
leveraging the USC. The K domain implements the same
mitigations as in Linux-style.

WARD’s design is aimed at reducing the overhead of mit-
igations associated with system calls. To zoom in on the
system call overhead, we evaluate WARD’s performance using
LEBench [24], a collection of system call workloads repre-
sentative of a range of real applications. This allows us to
precisely report and explain the effect of WARD’s techniques
on individual system calls. We don’t report results for the
networking benchmarks in LEBench, because the WARD pro-
totype doesn’t have a suitable in-kernel network stack.

All benchmarks were run on a Dell PowerEdge T430 with
two E5-2640 v4 CPUs and 64 GB of RAM.

One potential concern with the use of recent microcode is
that it makes the baseline slower, which in turn makes the
cost of mitigations appear lower than they really are. This
is similar to the significant effect we observed with newer
CPUs, as described in §2. However, with newer microcode,
we find that the performance of the baseline is not significantly
affected: it achieves similar performance even when we use
old microcode. The reason for this is that the recent microcode
updates add mitigations that can be specifically enabled (e.g.,
through the SPEC_CTRLMSR), but almost nothing is enabled
by default. The Linux and Ward baseline experiments do not
enable these mitigations, and thus the performance effect is
minimal.

For the Linux measurements of LEBench, we use the 5.4.0
kernel on Ubuntu 20.04.

7.2 WARD’s USC-based fast mitigations
LEBench. Figure 7 shows the benefit of WARD’s fast miti-
gations on LEBench. The figure compares WARD with USC-
based and Linux-style mitigations, relative to the baseline with
no mitigations. As shown, WARD with fast USC-based miti-
gations is often able to match the unmitigated baseline. The
reason is that many of the microbenchmarks can execute with
no or very few world switches, as shown in Figure 8.

Many microbenchmarks (getpid through huge
pagefault in Figure 8) have nearly 0 transparent and
intentional world switches. They execute completely in the Q
domain. The reason that some have near 0 world switches,
but not exactly 0, is that during the measurement they were
interrupted by a timer interrupt, which requires a world switch
to the K domain to run the scheduler (the remainder of the
syscall is then executed in the K domain too).

Another cause for fractional numbers of transparent world
barriers is that some operations might have a slow path that
requires secrets but only gets triggered infrequently (i.e. be-
cause a memory allocator pool ran empty). A strength of the
WARD approach is that these sorts of cases don’t have to be
manually annotated and in fact it is harmless to completely
ignore them provided they are executed infrequently enough.

There are several microbenchmarks (e.g., the bigger read
and write ones) that perform one intentional world switch
per system call. These system calls immediately enter the K
domain and thus perform identical to WARD with full mitiga-

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1149

ge
tp

id
co

nt
ex

ts
w

itc
h

fo
rk

fo
rk

-c
hi

ld
th

rc
re

at
e

th
rc

re
at

e-
ch

ild
bi

g
fo

rk
bi

g
fo

rk
-c

hi
ld

hu
ge

fo
rk

hu
ge

fo
rk

-c
hi

ld
sm

al
lw

ri
te

sm
al

lr
ea

d
sm

al
lm

m
ap

sm
al

lm
un

m
ap

sm
al

lp
ag

e
fa

ul
t

m
id

re
ad

m
id

w
ri

te
m

id
m

m
ap

m
id

m
un

m
ap

m
id

pa
ge

fa
ul

t
bi

g
re

ad
bi

g
w

ri
te

bi
g

m
m

ap
bi

g
m

un
m

ap
bi

g
pa

ge
fa

ul
t

hu
ge

re
ad

hu
ge

w
ri

te
hu

ge
m

m
ap

hu
ge

m
un

m
ap

hu
ge

pa
ge

fa
ul

t

0

1

2

3

4

5
R

el
at

iv
e

ru
nt

im
e

Linux-style Mitigations
USC-based Mitigations

Figure 7: Performance of WARD with fast USC-based mitigations and with Linux-style mitigations, normalized against the baseline performance of WARD
without any mitigations.

tions, and have the same overhead. These system calls also
perform much work in the kernel and the overhead of the 1
world switch is amortized by that work.

The thr create and thr create-child do multiple
syscalls per iteration, but average one world barrier per iter-
ation. Specifically, the thr create microbenchmark makes
three systems calls: one clone that requires a world switch
and a call to each of sigprocmask and set_robust_list
which don’t. The thr create-child microbenchmark in-
cludes an additional call to (sigprocmask) from the child
process, for which WARD can also avoid the world switch.

The fork and fork-child benchmarks each do a single
syscall with an intentional world barrier that takes the vast
majority of execution time, but also raise a handful of page
faults to populate page table entries (which need secrets if they
are copy-on-write related or if the kernel runs out of zeroed
memory pages and has to prepare more).

An interesting case is the context switch microbench-
mark. This microbenchmark measures context switching by
writing and reading a byte over a pipe between two processed
pinned to the same core. The write calls avoids a world
switch because the scheduler can wake other processes while
in the Q domain, but the read call causes a context switch
and (since the two processes are mutually distrusting) thus
requires a world switch.

When we modify the microbenchmark to pin the two pro-
cesses to different cores we observe that it runs without world
switches and that the overhead is about 25 times lower than
Linux-style mitigations.

Application: git. To confirm that the improved performance
of WARD’s fast mitigations seen in LEBench translates into

sys calls World switches
T I Sum

getpid 1 0 0 0
small write 1 0 0 0
small read 1 0 0 0
small mmap 1 0 0 0
small munmap 1 0 0 0
small page fault 1 0 0 0
mid mmap 1 0 0 0
mid munmap 1 0 0 0
mid page fault 1 0 0 0
big mmap 1 0 0 0
big page fault 1 0 0 0
huge mmap 1 0 0 0
huge page fault 1 0 0 0
context switch 2 0 1 1
thr create 3 0 1 1
thr create-child 4 0 1 1
mid read 1 0 1 1
mid write 1 0 1 1
big read 1 0 1 1
big write 1 0 1 1
big munmap 1 1 0 1
huge read 1 0 1 1
huge write 1 0 1 1
huge munmap 1 1.001 0 1.001
fork 2 0 2 2
big fork 2 0 2 2
huge fork 2 0 2 2
huge fork-child 17 0 7 7
big fork-child 17 0.006 7.02 7.026
fork-child 17 0.012 7.065 7.077

Figure 8: The microbenchmarks, sorted by the sum of the number of transpar-
ent (T) and intentional (I) world switches per iteration, along with the number
of system calls invoked (including page faults).

1150 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

Configuration Transparent Intentional

None 2457 cycles 1082 cycles
SpectreV2 2453 cycles 1075 cycles
MDS 3337 cycles 1980 cycles
MDS+SpectreV2 3363 cycles 1992 cycles
MDS+SpectreV2+Q_retpoline 3406 cycles 2014 cycles

Figure 9: The costs of transparent and intentional world switches for different
configurations.

application-level performance improvements, we evaluated
the performance of git. For this benchmark, we ran git
status in a 100 MB repository that we cloned from GitHub;
all of the file system state was cached in memory. The average
runtime for Linux-style mitigations took 24.6% longer than the
unmitigated baseline, and USC-style mitigations took 11.2%
longer than the unmitigated baseline. Much of the speedup
is due to the fact that git status invokes frequent lstat
system calls, which can execute in the Q domain. The remain-
ing overhead is due to system calls like openat that require a
world barrier for accessing potentially sensitive file contents.

7.3 World switch
§7.2 shows that the mitigation overhead is dominated by the
cost of a world switch. This section breaks down this cost.

An intentional world switch via kswitch() takes around
644 cycles on a shallow stack, plus 50 cycles or so for every
KB of stack used (the cost of a memcpy). A transparent world
switch using a page fault adds 1372 cycles.

Figure 9 measures the cost of a null system call that in-
vokes an intentional or a transparent world switch, and re-
turns. It shows the cost for different configurations: no miti-
gations, MDS mitigations, SpectreV2 mitigations, and with
retpoline in Q domain. The configuration with Q_retpolines
runs with retpolines in both the Q and K domains. It shows the
benefit of WARD patching them out at runtime: the retpoline
that disables branch prediction for indirect jumps through the
system call table costs 22 cycles.

7.4 WARD memory overhead
Because the memory protection mechanisms that WARD uses
to expose non-secret data to Q domains operates on a 4KB or
2MB granularity, WARD’s approach incurs some additional
memory overhead. Figure 10 lists some of these cases. In
general we face a trade-off when filling small dynamic mem-
ory allocations for Q domain state: either we use an entire
page each time, or we tolerate higher memory fragmentation
because all chucks of memory on a page must be only used by
the same Q domain.

7.5 Security
To validate that WARD’s mitigations work, we implemented a
demonstration program that attempts to execute a Spectre
V2 attack against the WARD kernel. While running with
applicable mitigations disabled (i.e. each Q and K domain
retpoline replaced with a normal indirect jump) the attack

Component Overhead Explanation

Kernel text 2 MB Separate text segments for
Q and K domains

Public kernel data < 4 KB Padding to a page boundary
Process structure 4 KB / process Allocated on its own page
Thread structure ~6 KB / thread Split between a Q domain

page and a K domain page
Q domain stack 32 KB / thread Smaller stacks possible by

avoiding deep recursion
Page tables varies Q domain mappings require

additional PTEs
Inodes – Many public allocations
Scheduler state – packed into a single page

Figure 10: Memory overhead of different WARD components.

succeeds in exfiltrating secret kernel data. However, when
our Spectre V2 mitigations are re-enabled (by re-enabling
retpolines in the K domain) the attack is thwarted. It is of
course impossible to be certain that all variations on the attack
would be blocked, but this test provides some confidence
both that the unmitigated baseline is vulnerable to transient
execution attacks, and that WARD is able to prevent them.

8 Discussion
Future vulnerabilities. It is likely that there are further tran-
sient execution attacks either under embargo or yet to be dis-
covered. Based on trends in the existing attacks, we believe
that WARD should be well positioned to address them: so far,
mitigations developed for Linux have been suitable to directly
copy into WARD. Since many need to run only at K domain
entry/exit instead of every user-kernel boundary crossing, the
same defenses in WARD might be cheaper to apply than they
would be for Linux.

Linux. We are optimistic that Ward’s techniques could also
benefit monolithic production kernels for two reasons. First,
WARD and Linux are in the same ballpark in terms of system
call performance on LEBench. Out of the 30 microbench-
marks, WARD is faster than Linux on 18 of them, and slower
on 12. Second, as shown in Figure 1 (§2) Linux incurs a signif-
icant overhead for mitigations on LEBench and that overhead
is in line with the overhead that WARD’s Linux-style mitiga-
tions incur on LEBench (see Figure 7). Some systems calls
experience more overhead in WARD, because they implement
less functionality (e.g., getpid), but the corresponding calls
in Linux also incur significant overhead. Some systems calls
in WARD have less overhead than Linux, because they are not
as efficient; for example, big and huge mmap in WARD requires
an update of its radix-tree VM data structures [7], while Linux
just inserts the new region into a list. Linux may see a bigger
pay for those system calls with WARD’s design than WARD.

A question is how much effort is required to incorporate
WARD’s techniques into a production kernel such as Linux.
Our preliminary efforts have proven encouraging: we found
that we could leverage existing infrastructure for KPTI to

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1151

maintain Q domain and K domain page tables. We imple-
mented a switch_world function in Linux, which switches
to the K domain and copies the Q stack to the K stack. We
modified the Linux page-fault handler to call this function
when it encounters a page fault while running with the Q page
table. This allows the Linux kernel to run as normally with a
transparent world switch on each system call. We refactored
the struct task_struct into a Q-private and secret part,
allowing the gettid system call to run completely in the Q
domain. This gives us some indication that the basic approach
of WARD could be made to work in Linux, although an open
question is how to best re-design the data structures in the
Linux kernel to fit WARD’s design.

9 Related work
This paper is motivated by the papers that show how secret
kernel data can be leaked through micro-architectural state
(e.g., [4, 6, 16, 21, 25, 29]). In particular, two survey papers
were helpful by categorizing the known attacks [5, 12].

This paper relies heavily on the mitigation work in the
Linux community [19]. WARD adopts Linux’s techniques
and their optimized implementation in the K domain. WARD
uses, for example, Linux’s nospec macro for bounds clip-
ping, FILL_RETURN_BUFFER to fill the return buffer, and ret-
poline. WARD’s hotpatching of its kernel text to remove retpo-
lines in the Q domain was inspired by Linux’s ALTERNATIVE
macro [9].

In addition to the software/microcode approach currently
used by Linux and other production operating systems, there
are several proposed hardware-only defenses that delay the
use of speculative data until it is safe [3, 31, 34]. While these
defenses are more comprehensive, they have higher overheads
that impact performance whenever speculation occurs. By
contrast, the USC constrains speculation in a more targeted
way based on memory mappings. ConTExT also proposes
constraining speculation based on memory mappings, but in-
troduces a new PTE bit to explicitly mark pages that contain se-
cret data [26]. WARD instead keeps secrets in separate address
spaces, and allows speculation after employing its defenses to
switch to the K domain. Finally, SpecCFI proposes to enforce
control-flow integrity during speculative execution [18]. This
idea strengthens Spectre defenses, and is complementary to
WARD.

The Q page table is inspired by the shadow page table
in KAISER [11] and KPTI [20]. In Linux, when a process
executes in user space, the process runs with a shadow page
table, which maps only minimal parts of kernel memory: the
kernel memory to enter/exit the kernel on a system call. As
soon as the process enters the kernel, it switches to the kernel
page table that maps all of physical memory. WARD, however,
executes complete system calls while running under the Q
page table; this requires a significant redesign of the OS kernel,
which is a major focus of this paper.

The use of virtual-memory to partition the kernel address

space has a long history in operating systems research. One
example is Nooks [27], which runs device drivers in separate
protection domains with their own page table in kernel space to
provide fault isolation between drivers and the kernel. Another
example is the use of Mondrian Memory Protection [32] to
isolate Linux kernel modules in different protection domains
within the kernel address space [33]. The most recent example
is Mike Rapoport’s work on kernel address space isolation [10]
in Linux. These designs use similar techniques to introduce
isolation domains within the kernel, but focus on traditional
attacks (e.g., code execution through a buffer overflow) as
opposed to transient execution.

10 Conclusion
This paper articulates the unmapped speculation contract
(USC) for a division of labor between hardware and soft-
ware. This contract allows hardware to speculate on many
values (but not the values of page table entries) and provides
software with a mechanism to prevent leaking secrets through
micro-architectural state. The WARD design shows how USC
can be used to reduce the performance costs of mitigations
on system calls using per-process Q domains and global K
domains. WARD transparently switches from Q- to K-domain
through page faults, uses temporary mappings to access un-
mapped physical pages, and splits data structures into public
and private parts. An evaluation shows that WARD can run
the microbenchmarks of LEBench with small performance
overhead compared to a kernel without mitigations: for 18 out
of 30 LEBench microbenchmarks, WARD’s performance is
within 5% of the performance without mitigations . Although
WARD is research kernel, we are hopeful that its ideas can
carry over to production monolithic kernels.

Acknowledgments
We’d like to thank the anonymous reviewers and our shepherd,
Chris Hawblitzel, who provided comments that helped im-
prove this paper. We also want to thank our artifact evaluators
for their diligent examination of our artifact submission.

Artifact
Source code and directions for using WARD are available at
https://github.com/mit-pdos/ward.

References
[1] Advanced Micro Devices, Inc. Speculation behav-

ior in AMD micro-architectures. https://www.
amd.com/system/files/documents/security-
whitepaper.pdf, 2019.

[2] Apple, Inc. Additional mitigations for speculative execu-
tion vulnerabilities in Intel CPUs. https://support.
apple.com/en-us/HT210107, August 2019.

1152 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://github.com/mit-pdos/ward
https://www.amd.com/system/files/documents/security-whitepaper.pdf
https://www.amd.com/system/files/documents/security-whitepaper.pdf
https://www.amd.com/system/files/documents/security-whitepaper.pdf
https://support.apple.com/en-us/HT210107
https://support.apple.com/en-us/HT210107

[3] Kristin Barber, Anys Bacha, Li Zhou, Yinqian Zhang,
and Radu Teodorescu. SpecShield: Shielding specu-
lative data from microarchitectural covert channels. In
Proceedings of the 28th International Conference on Par-
allel Architectures and Compilation Techniques, pages
151–164, Seattle, WA, September 2019.

[4] Jo Van Bulck, Marina Minkin, Ofir Weisse, Daniel
Genkin, Baris Kasikci, Frank Piessens, Mark Silberstein,
Thomas F. Wenisch, Yuval Yarom, and Raoul Strackx.
Foreshadow: Extracting the keys to the Intel SGX king-
dom with transient out-of-order execution. In Proceed-
ings of the 27th USENIX Security Symposium, pages
991–1008, Baltimore, MD, August 2018.

[5] Claudio Canella, Jo Van Bulck, Michael Schwarz, Moritz
Lipp, Benjamin von Berg, Philipp Ortner, Frank Piessens,
Dmitry Evtyushkin, and Daniel Gruss. A systematic
evaluation of transient execution attacks and defenses.
CoRR, abs/1811.05441, 2018.

[6] Claudio Canella, Daniel Genkin, Lukas Giner, Daniel
Gruss, Moritz Lipp, Marina Minkin, Daniel Moghimi,
Frank Piessens, Michael Schwarz, Berk Sunar, Jo Van
Bulck, and Yuval Yarom. Fallout: Leaking data on
Meltdown-resistant CPUs. In Proceedings of the 26th
ACM Conference on Computer and Communications Se-
curity (CCS), pages 769–784, London, United Kingdom,
November 2019.

[7] Austin T. Clements, M. Frans Kaashoek, and Nickolai
Zeldovich. RadixVM: Scalable address spaces for mul-
tithreaded applications. In Proceedings of the 8th ACM
EuroSys Conference, pages 211–224, Prague, Czech Re-
public, April 2013.

[8] Austin T. Clements, M. Frans Kaashoek, Nickolai Zel-
dovich, Robert T. Morris, and Eddie Kohler. The scal-
able commutativity rule: Designing scalable software for
multicore processors. In Proceedings of the 24th ACM
Symposium on Operating Systems Principles (SOSP),
pages 1–17, Farmington, PA, November 2013.

[9] Jonathan Corbet. SMP alternatives. https://lwn.net/
Articles/164121/, 2005.

[10] Jonathan Corbet. Generalizing address-space isolation.
https://lwn.net/Articles/803823/, November
2019.

[11] Daniel Gruss, Moritz Lipp, Michael Schwarz, Richard
Fellner, Clémentine Maurice, and Stefan Mangard.
KASLR is dead: Long live KASLR. In Proceedings of
the 9th International Symposium on Engineering Secure
Software and Systems, pages 161–176, Bonn, Germany,
July 2017.

[12] Mark D. Hill, Jon Masters, Parthasarathy Ranganathan,
Paul Turner, and John L. Hennessy. On the Spectre
and Meltdown processor security vulnerabilities. IEEE
Micro, 39(2):9–19, 2019.

[13] Intel, Inc. Deep dive: Retpoline: A branch tar-
get injection mitigation. https://software.
intel.com/security-software-guidance/deep-
dives/deep-dive-retpoline-branch-target-
injection-mitigation.

[14] Intel, Inc. Software guidance: L1 terminal fault.
https://software.intel.com/security-
software-guidance/software-guidance/l1-
terminal-fault, 2018.

[15] Intel, Inc. Software guidance: Rogue data cache
load. https://software.intel.com/security-
software-guidance/software-guidance/rogue-
data-cache-load, 2018.

[16] Paul Kocher, Jann Horn, Anders Fogh, Daniel Genkin,
Daniel Gruss, Werner Haas, Mike Hamburg, Moritz Lipp,
Stefan Mangard, Thomas Prescher, Michael Schwarz,
and Yuval Yarom. Spectre attacks: Exploiting specula-
tive execution. In Proceedings of the 40th IEEE Sympo-
sium on Security and Privacy, pages 19–37, San Fran-
cisco, CA, May 2019.

[17] Paul C. Kocher. Timing attacks on implementations
of Diffie-Hellman, RSA, DSS, and other systems. In
Proceedings of the 16th Annual International Cryptology
Conference (CRYPTO), pages 104–113, Santa Barbara,
CA, August 1996.

[18] Esmaeil Mohammadian Koruyeh, Shirin Haji Amin Shi-
razi, Khaled N. Khasawneh, Chengyu Song, and Nael
Abu-Ghazaleh. SpecCFI: Mitigating Spectre attacks us-
ing CFI informed speculation. In Proceedings of the 41st
IEEE Symposium on Security and Privacy, pages 39–53,
San Francisco, CA, May 2020.

[19] Linux Kernel Maintainers. Hardware vulnerabilities.
https://www.kernel.org/doc/Documentation/
admin-guide/hw-vuln/, 2020.

[20] Linux Kernel Maintainers. Page table isolation.
https://www.kernel.org/doc/Documentation/
x86/pti.txt, 2020.

[21] Moritz Lipp, Michael Schwarz, Daniel Gruss, Thomas
Prescher, Werner Haas, Anders Fogh, Jann Horn, Stefan
Mangard, Paul Kocher, Daniel Genkin, Yuval Yarom,
and Mike Hamburg. Meltdown: Reading kernel memory
from user space. In Proceedings of the 27th USENIX
Security Symposium, pages 973–990, Baltimore, MD,
August 2018.

USENIX Association 14th USENIX Symposium on Operating Systems Design and Implementation 1153

https://lwn.net/Articles/164121/
https://lwn.net/Articles/164121/
https://lwn.net/Articles/803823/
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-retpoline-branch-target-injection-mitigation
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-retpoline-branch-target-injection-mitigation
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-retpoline-branch-target-injection-mitigation
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-retpoline-branch-target-injection-mitigation
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/l1-terminal-fault
https://software.intel.com/security-software-guidance/software-guidance/rogue-data-cache-load
https://software.intel.com/security-software-guidance/software-guidance/rogue-data-cache-load
https://software.intel.com/security-software-guidance/software-guidance/rogue-data-cache-load
https://www.kernel.org/doc/Documentation/admin-guide/hw-vuln/
https://www.kernel.org/doc/Documentation/admin-guide/hw-vuln/
https://www.kernel.org/doc/Documentation/x86/pti.txt
https://www.kernel.org/doc/Documentation/x86/pti.txt

[22] Microsoft Corporation. Windows guidance to pro-
tect against speculative execution side-channel vulnera-
bilities. https://support.microsoft.com/en-us/
help/4457951/, November 2019.

[23] Hany Ragab, Alyssa Milburn, Kaveh Razavi, Herbert
Bos, and Cristiano Giuffrida. CrossTalk: Speculative
data leaks across cores area real. In Proceedings of the
42nd IEEE Symposium on Security and Privacy, San
Francisco, CA, May 2021.

[24] Xiang (Jenny) Ren, Kirk Rodrigues, Luyuan Chen,
Camilo Vega, Michael Stumm, and Ding Yuan. An
analysis of performance evolution of Linux’s core oper-
ations. In Proceedings of the 27th ACM Symposium on
Operating Systems Principles (SOSP), pages 554–569,
Huntsville, Ontario, Canada, October 2019.

[25] Michael Schwarz, Moritz Lipp, Daniel Moghimi,
Jo Van Bulck, Julian Stecklina, Thomas Prescher, and
Daniel Gruss. ZombieLoad: Cross-privilege-boundary
data sampling. In Proceedings of the 26th ACM Confer-
ence on Computer and Communications Security (CCS),
pages 753–768, London, United Kingdom, November
2019.

[26] Michael Schwarz, Robert Schilling, Florian Kargl,
Moritz Lipp, Claudio Canella, and Daniel Gruss.
Context: Leakage-free transient execution. CoRR,
abs/1905.09100, 2019.

[27] Michael M. Swift, Brian N. Bershad, and Henry M. Levy.
Improving the reliability of commodity operating sys-
tems. ACM Transactions on Computer Systems, 22(4),
November 2004.

[28] Stephan van Schaik, Andrew Kwong, Daniel Genkin,
and Yuval Yarom. SGAxe: How SGX fails in practice.
https://sgaxe.com, 2020.

[29] Stephan van Schaik, Alyssa Milburn, Sebastian Öster-
lund, Pietro Frigo, Giorgi Maisuradze, Kaveh Razavi,
Herbert Bos, and Cristiano Giuffrida. RIDL: Rogue
in-flight data load. In Proceedings of the 40th IEEE
Symposium on Security and Privacy, pages 88–105, San
Francisco, CA, May 2019.

[30] Abhishek Verma, Luis Pedrosa, Madhukar Korupolu,
David Oppenheimer, Eric Tune, and John Wilkes. Large-
scale cluster management at Google with Borg. In Pro-
ceedings of the 10th ACM EuroSys Conference, pages
18:1–18:17, Bordeaux, France, April 2015.

[31] Ofir Weisse, Ian Neal, Kevin Loughlin, Thomas F.
Wenisch, and Baris Kasikci. NDA: Preventing spec-
ulative execution attacks at their source. In Proceedings

of the 52nd IEEE/ACM International Symposium on Mi-
croarchitecture, pages 572–586, Columbus, OH, October
2019.

[32] Emmett Witchel, Josh Cates, and Krste Asanović. Mon-
drian memory protection. In Proceedings of the 10th
International Conference on Architectural Support for
Programming Languages and Operating Systems (ASP-
LOS), pages 304–316, San Jose, CA, October 2002.

[33] Emmett Witchel, Junghwan Rhee, and Krste Asanović.
Mondrix: Memory isolation for Linux using Mondriaan
memory protection. In Proceedings of the 20th ACM
Symposium on Operating Systems Principles (SOSP),
pages 31–44, Brighton, United Kingdom, October 2005.

[34] Jiyong Yu, Mengjia Yan, Artem Khyzha, Adam Morri-
son, Josep Torrellas, and Christopher W. Fletcher. Spec-
ulative taint tracking (STT): A comprehensive protec-
tion for speculatively accessed data. In Proceedings
of the 52nd IEEE/ACM International Symposium on Mi-
croarchitecture, pages 954–968, Columbus, OH, October
2019.

[35] Xiao Zhang, Eric Tune, Robert Hagmann, Rohit Jnagal,
Vrigo Gokhale, and John Wilkes. CPI2: CPU perfor-
mance isolation for shared compute clusters. In Proceed-
ings of the 8th ACM EuroSys Conference, pages 379–391,
Prague, Czech Republic, April 2013.

1154 14th USENIX Symposium on Operating Systems Design and Implementation USENIX Association

https://support.microsoft.com/en-us/help/4457951/
https://support.microsoft.com/en-us/help/4457951/
https://sgaxe.com

	Introduction
	Motivation
	Goal and threat model
	Approach: Unmapped speculation contract
	Design
	Overview
	World switch
	Mitigations
	Kernel text
	Memory management
	Process management
	File system
	Pipes
	Discussion

	Implementation
	Evaluation
	Experimental methodology
	Ward's USC-based fast mitigations
	World switch
	Ward memory overhead
	Security

	Discussion
	Related work
	Conclusion

