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Transient execution attacks break isolation

Enable programs to access information
they shouldn’t be able to.

Different cases:

a.

b.

Program reading information from the OS

Program accessing information from
another program

Leaking information between websites
visited in the same web browser
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ere are many different transient execution attacks
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Mitigations restore security guarantees

e Involve either software changes or hardware
fixes.

e Some have alarge performance overhead,
while others don't.

Attack Mitigation

Meltdown Page Table Isolation
PTE Inversion

LITE Flush L1 Cache

LazyFP Always save FPU

Spectre V1 Index Masking
Ifence after swapgs
Generic Retpoline
AMD Retpoline
IBRS

ApECIe AL Enhanced IBRS
RSB Stuffing
IBPB

Spec. Store Bypass SSBD
Flush CPU Buffers

MDS

Disable SMT



Contributions: Understanding the performance
evolution of mitigations

e End-to-end performance study over generations of processors
e Detailed microbenchmarking of individual mitigations

e New technique to measure speculation (not covered in this talk)

We evaluate the performance of mitigations not their security.



Example attack: Spectre V1

// vulnerable if index >= SIZE M
if (index < SIZE) { el

shared[y * CACHE_LINE];

y
z

}

Cache

// userspace attacker code

secret = is_in_cache(&shared[0]);
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Example attack: Spectre V1

// vulnerable if index >= SIZE
if (index < SIZE) {

array[index];
shared[y * CACHE_LINE];

y
z

Memory

array secret shared

}

// userspace attacker code
secret = is_in_cache(&shared[0]);

Cache
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Example Mitigation

// vulnerable if index >= SIZE M
if (index < SIZE) { el

e SO - | oo W soed
y = array[index]; array secret shared

z shared[y * CACHE_LI

}

Block out-of-bounds
memory access

Cache

secret = is_in_cache(&shared[0]);



Understanding Performance
Impact



Approach: Evaluate a range of CPU generations

First attacks
discovered

Hardware mitigations deployed

Skylake Cascade Lake Ice.Lake Ice Lake
|nte| Broadwell Client Client Server
- } } } } } } }

2014 2015 2016 2017 2018 2019 2020
Zen Zen?2 Zen 3
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Goal: Attribute overhead to mitigations

Overhead (%)

I~

Mitigation#1
} — Mitigation #2

-} «——— Mitigation #3
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Workloads: focus on security boundaries

1. Operating system boundary

| ==

2. JavaScript sandbox

¥2 VirtualBox
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Study 1.
Operating System
Boundary

LEBench [SOSP ‘19]

)

Linux
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Operating system boundary overhead has decreased

P71 Clear CPU buffere e Declined from 30% — 3%.
30 - - Im  Meltdown Mitigations
s EEm  Spectre V2 Mitigations e Onlyafew attacks impact
] | th
gl > Other performance.
0 X
20 A
ol s
| -
o % 15 -
g a
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v ]
- i1 1 1
Broadwell Skylake Cascade Ice Lake Ice Lake Zen Zen 2 Zen 3
Client Lake Client  Server
Intel AMD

Newer Newer 17



Microarchitectural Data Sampling (MDS)

e Performance impact on Broadwell and 35
= Clear CPU buffers
Skylake Client 30 | B Meltdown Mitigations
= Bm  Spectre V2 Mitigations
25 EEm Other
e Adds 15% overhead to LEBench. z
' 20
3
S
3
]

. .

Broadwell Skylake Cascade Ice Lake Ice Lake Zen Zen 2 Zen3
Client Lake Client  Server

Intel AMD

OS-level mitigation overhead
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MDS: Hardware fix avoids costly mitigation

e Mitigated by executing a verw instruction
after every system call.

e Adds 500+ cycles overhead to every system
call.

e Onlyolder Intel processors are vulnerable.

Vendor CPU Clear Cycles
Broadwell 610
Skylake Client 518
Intel  Cascade Lake N/A
Ice Lake Client N/A
Ice Lake Server N/A
Zen N/A
AMD Zen?2 N/A
Zen 3 N/A

Cycles required to perform the MDS mitigation
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Meltdown: Also expensive to mitigate

Same two processors are affected.

Causes 10% overhead on LEBench.

Slowdown (%)

35 A
= Clear CPU buffers
30 - - s Meltdown Mitigations
Bm  Spectre V2 Mitigations
25 - HEEm Other

. .

Broadwell Skylake Cascade Ice Lake Ice Lake Zen Zen 2 Zen3
Client Lake Client  Server
Intel AMD

OS-level mitigation overhead
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Meltdown: Hardware fix avoids another mitigation

Mitigated using Kernel Page Table Isolation

o Requires switching page tables on every
system call entry and exit.

Cost far exceeds time spent changing
privilege modes.

Again, only older Intel processors are
vulnerable

Vendor CPU KPTI Cycles
Broadwell 412
Skylake Client 382
Intel Cascade Lake N/A
Ice Lake Client N/A
Ice Lake Server N/A
Zen N/A
AMD Zen?2 N/A
Zen 3 N/A

Cycles spent on the mitigation during a system call
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Spectre V2: Still around but modest cost

e Impacts all our processors. 35
== Clear CPU buffers
30 4 . Bmm Meltdown Mitigations
e Overhead of 3-5% on LEBench. mm  Spectre V2 Mitigations
25 - EEm Other
9
T 20
2
3
g
w0

Client Lake Client  Server

Intel AMD

OS-level mitigation overhead
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Spectre V2: Involves many mitigations

Many different mitigations, both hardware

and software.

(@]

See paper for a detailed look

- o 5 3
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Retpoline v v v v Y
IBRS
eIBRS v v v
RSB Stuffing v/ v v v v v v v
IBPB v v v v v v v Y

The different mitigations for Spectre V2 and which
processors use each.
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Study 2: JavaScript
Sandbox

Octane 2

i

Firefox

:

Linux
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Javascript sandbox overhead has not improved

Lower is better

-

Slowdown (%)

= = N N w w » H
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Speculative Store Bypass Disable
Other OS

Index Masking

Object Mitigations

Other Javascript

— e —

Broadwell Skylake Cascade Ice Lake Ice Lake Zen Zen 2 Zen 3
Client Lake Client  Server
Intel AMD
> >

Newer Newer

No improvement across
generations

Slowdown is in relative terms:
Zen 3 is actually far faster than
any of the others

25



Speculative Store Bypass: Impacts Firefox if enabled

e Allour processors are vulnerable, but

45 -
H H 1 Speculative Store Bypass Disable
protection is opt-in. 40 1 — g —
35 I Index Masking
e Most programs do not use the mitigation. 30.- S ‘OblectMltigations
;@ Il Other Javascript i
. . . 25 ~
o Firefox did when we tested, but future versions %
o
seem not to. g
w0
e ISAprovides aflagto detect if a processor is
vulnerable.
. Broadwell Skylake Cascade Ice Lake Ice Lake Zen Zen 2 Zen3
o  Suggests that future processors might not be. Client  Lake  Client  Server

Intel AMD

JavaScript mitigation overhead
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Spectre Vi: Only impacts Firefox

e  Major slowdown for JavaScript.

e Mitigated using index masking, object
mitigations, and a few others.

o  Automatically by a JIT (JavaScript)

o  Ormanually applied by the programmer (C
code)

Slowdown (%)

45 ~
Speculative Store Bypass Disable

40 7 s Other OS
35 I Index Masking

Il Object Mitigations
30 1 B Other Javascript .
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Client Lake Client  Server

Intel AMD

JavaScript mitigation overhead
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Takeaways

e Operating system boundary: new processors eliminate nearly all the overhead
e JavaScript sandboxing: overhead is still high
o  Better Spectre V1 mitigations could have a big impact
e Overhead on new CPUs is only from Spectre V1, Spectre V2, and Speculative Store Bypass

o All three attacks have been known since 2018.

o Attacks discovered since don’t cause much overhead.
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Limitations

e Workloads may not be representative of all applications

o  Tofind out how your specific application is impacted, benchmark it!
e Some security boundaries aren’t covered (e.g. the eBPF-kernel boundary)
e Futureisuncertain:

o  New processor generations might be different

o  Other attacks might be discovered

o  Existing mitigations might actually be flawed
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Related work

e Many attack papers; a couple surveys including Hill [MICRO ‘19], Canella [CoRR ‘18], and Xiong
[ACS 22].

e Lots of work on hardware and software fixes.

o  SpecShield [PACT ‘19], Speculative Taint Tracking [MICRO ‘19], NDA [MICRO ‘19], MuonTrap [ISCA ‘20], and
Speculative Data-Oblivious Execution [ISCA ‘20].

o  Sitelsolation in Firefox and Chrome and Swivel [USENIX Security] all for WASM bytecode.

o  Retpolines and Kernel Page Table Isolation.

e Top-level benchmarks from Phoronix and others.

o  Wego further by attributing overheads to specific mitigations, and measuring Javascript mitigations.
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Conclusion

github.com/mit-pdos/spectrebench

We benchmarked the effect of mitigations over a range of processor generations and workloads.
Hardware changes significantly speed up OS-level workloads, while JavaScript overheads remain.

JavaScript Spectre V1 mitigations are a good direction for further optimization.

Contact: jonathan@fintelia.io
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