Performance Evolution of
Mitigating Transient Execution
Attacks

Jonathan Behrens, Adam Belay, and M. Frans Kaashoek

MIT CSAIL

Transient execution attacks break isolation

Enable programs to access information
they shouldn’t be able to.

Different cases:

a.

b.

Program reading information from the OS

Program accessing information from
another program

Leaking information between websites
visited in the same web browser

| ==

¥2 VirtualBox

@

ubuntu®

ere are many different transient execution attacks

CROSSTALK: Speculative Data Leaks
Across Cores Are Real

my Ragab*!, Alyssa Milburn*’, Kaveh Razavi®, Herbert Bos*,

e

and Cristiann i

. with
me“gdom
“te\s 2 *Department of Computer Science
he KeY’ ecution Vriie Uni dam, The . ion
. pxtracting 0 “ E" ns =k 2 amilburn} @vu.nl - e Executio
yw: EX! Out-of- k Piesse 1 tin pec
porestAPON: B ent o s K P . Spectre Attacks: Exploiting
< L“““"“““;“A - \‘“ delaide P ders Fogh, Daniel Genkin'.
2, Ofir Weiss 1 \{ wal Ya _‘Um‘,e,\-nv of A vt Kocher!, Jann Hor Anders el Moritz Lipp®s
B A o o e of M aeger Haes M‘\k,f ‘]hnll Sebwarz?, Yuval Yarom®
e e e 4 ichac!
o M ‘ks‘hm 2echnion UH\:“(;I ed C rescher® 2 Google Project Zero. d
Net, KU Lewvets it u\“““‘“ﬂ o \:(2 ,aumochevcﬂvg) Ivania and University of Marylan
ety ith rOCt 3 v nns’
\ jmec-Dist istrusting © ‘t““‘t m\w \fwm nd mer Iniversity of vc:‘ Cmems Technologys
o (TCB) 1! o epriv ‘h code T \m‘:“, of TcLh\'\Ol“E\“ ity of Adelaide an d Data6l
e reacnof O h Division.
h o arci
trac, < onsitivainées
tion wigp, Transjep leverage hardware vulnerabilities © leak sensit
(on and spec- 1everag
© Van By 4::1‘)!0. if the Auacks of -
< Silbe, Maring Minkip, A
Zombi rm-m R Da
ieLoad:; 20Ul Sy, i Danijej Genkin,
Cross-Privilege-Boy, KU Loy, R, Thomag 1,y “K‘m'm CPUS
rar pichae Selvar, ndary Data Sampling Y Technion, 3y misc’, on h’“e\
2 University of Tecppgy M ’ vers m\ .
nmh«slvdm.{u(;umh:;:; A C'mmhﬁ,’fﬂ‘)’({‘é’l’_ o DS of Michiggy, 4y, . L e ng ata
moritz lipp K1
o Jo Van Buig lipais C Cbeout EV‘C“()(\S
IEC-DiStriNet, KU Leyyen Julian Ste & C h vong
Jovanbulck@cs kufeyyy e Cyberus Tect Andrew Kwong
luhen,,lu ing e of Michigan
lk‘hmﬂnqy Marina Mink Universs - imich.edd
i g = i TE M.Lh\u“ ankwong€
oDl Gr LazyFP: Leaking FPU Register State using s van Schaik’ niversity - chedu
: anicl s i i i Stephan V2% an Kin@umic
ABSTRACT daniel grussoiag, Microarchitectural Side-Channels University ©f M\T‘“‘%\“ mir Yoval YarO® 6t
" eatly 2018, Meltdown it g, s @umich-€¢ Jaide an
oy o o SN stephvs®) ety OF AN

ace by exploitine < 1

§ PP RS

0g
reh:
Chitecy onis
UUOH t
Ohin;t
val yu, ™ Michg, .
rom, g Sf"“ - ue IH]
Leuye, anie] mu,
e Grungs 0"
iy
ensity o \, hfuu Polytceny and f, Tank. P Mlnku.)
e Ingi,
Y of Age, m,
elige ™ Unive

'd Dy, {”\") of |

Mitigations restore security guarantees

e Involve either software changes or hardware
fixes.

e Some have alarge performance overhead,
while others don't.

Attack Mitigation

Meltdown Page Table Isolation
PTE Inversion

LITE Flush L1 Cache

LazyFP Always save FPU

Spectre V1 Index Masking
Ifence after swapgs
Generic Retpoline
AMD Retpoline
IBRS

ApECIe AL Enhanced IBRS
RSB Stuffing
IBPB

Spec. Store Bypass SSBD
Flush CPU Buffers

MDS

Disable SMT

Contributions: Understanding the performance
evolution of mitigations

e End-to-end performance study over generations of processors
e Detailed microbenchmarking of individual mitigations

e New technique to measure speculation (not covered in this talk)

We evaluate the performance of mitigations not their security.

Example attack: Spectre V1

// vulnerable if index >= SIZE M
if (index < SIZE) { el

shared[y * CACHE_LINE];

y
z

}

Cache

// userspace attacker code

secret = is_in_cache(&shared[0]);

Example attack: Spectre V1

// vulnerable if index >= SIZE M
if (index < SIZE) { el

arrayindex]

shared[y * CACHE_LINE];

y
z

}

Cache

// userspace attacker code

secret = is_in_cache(&shared[0]);

Example attack: Spectre V1

// vulnerable if index >= SIZE M
if (index < SIZE) { el

shared[y * CACHE_LINE];

y
z

}

Cache

// userspace attacker code

secret = is_in_cache(&shared[0]);

Example attack: Spectre V1

// vulnerable if index >= SIZE M
if (index < SIZE) { el

shared[y * CACHE_LINE];

y
z

}

Cache

// userspace attacker code i

secret = is_in_cache(&shared[0]);

Example attack: Spectre V1

// vulnerable if index >= SIZE
if (index < SIZE) {

array[index];
shared[y * CACHE_LINE];

y
z

Memory

array secret shared

}

// userspace attacker code
secret = is_in_cache(&shared[0]);

Cache

10

Example Mitigation

// vulnerable if index >= SIZE M
if (index < SIZE) { el

e SO - | oo W soed
y = array[index]; array secret shared

z shared[y * CACHE_LI

}

Block out-of-bounds
memory access

Cache

secret = is_in_cache(&shared[0]);

Understanding Performance
Impact

Approach: Evaluate a range of CPU generations

First attacks
discovered

Hardware mitigations deployed

Skylake Cascade Lake Ice.Lake Ice Lake
|nte| Broadwell Client Client Server
- } } } } } } }

2014 2015 2016 2017 2018 2019 2020
Zen Zen?2 Zen 3

13

Goal: Attribute overhead to mitigations

Overhead (%)

I~

Mitigation#1
} — Mitigation #2

-} «——— Mitigation #3

14

Workloads: focus on security boundaries

1. Operating system boundary

| ==

2. JavaScript sandbox

¥2 VirtualBox

15

Study 1.
Operating System
Boundary

LEBench [SOSP ‘19]

)

Linux

16

Operating system boundary overhead has decreased

P71 Clear CPU buffere e Declined from 30% — 3%.
30 - - Im Meltdown Mitigations
s EEm Spectre V2 Mitigations e Onlyafew attacks impact
] | th
gl > Other performance.
0 X
20 A
ol s
| -
o % 15 -
g a
1 10 +
v]
- i1 1 1
Broadwell Skylake Cascade Ice Lake Ice Lake Zen Zen 2 Zen 3
Client Lake Client Server
Intel AMD

Newer Newer 17

Microarchitectural Data Sampling (MDS)

e Performance impact on Broadwell and 35
= Clear CPU buffers
Skylake Client 30 | B Meltdown Mitigations
= Bm Spectre V2 Mitigations
25 EEm Other
e Adds 15% overhead to LEBench. z
' 20
3
S
3
]

. .

Broadwell Skylake Cascade Ice Lake Ice Lake Zen Zen 2 Zen3
Client Lake Client Server

Intel AMD

OS-level mitigation overhead

18

MDS: Hardware fix avoids costly mitigation

e Mitigated by executing a verw instruction
after every system call.

e Adds 500+ cycles overhead to every system
call.

e Onlyolder Intel processors are vulnerable.

Vendor CPU Clear Cycles
Broadwell 610
Skylake Client 518
Intel Cascade Lake N/A
Ice Lake Client N/A
Ice Lake Server N/A
Zen N/A
AMD Zen?2 N/A
Zen 3 N/A

Cycles required to perform the MDS mitigation

19

Meltdown: Also expensive to mitigate

Same two processors are affected.

Causes 10% overhead on LEBench.

Slowdown (%)

35 A
= Clear CPU buffers
30 - - s Meltdown Mitigations
Bm Spectre V2 Mitigations
25 - HEEm Other

. .

Broadwell Skylake Cascade Ice Lake Ice Lake Zen Zen 2 Zen3
Client Lake Client Server
Intel AMD

OS-level mitigation overhead

20

Meltdown: Hardware fix avoids another mitigation

Mitigated using Kernel Page Table Isolation

o Requires switching page tables on every
system call entry and exit.

Cost far exceeds time spent changing
privilege modes.

Again, only older Intel processors are
vulnerable

Vendor CPU KPTI Cycles
Broadwell 412
Skylake Client 382
Intel Cascade Lake N/A
Ice Lake Client N/A
Ice Lake Server N/A
Zen N/A
AMD Zen?2 N/A
Zen 3 N/A

Cycles spent on the mitigation during a system call

21

Spectre V2: Still around but modest cost

e Impacts all our processors. 35
== Clear CPU buffers
30 4 . Bmm Meltdown Mitigations
e Overhead of 3-5% on LEBench. mm Spectre V2 Mitigations
25 - EEm Other
9
T 20
2
3
g
w0

Client Lake Client Server

Intel AMD

OS-level mitigation overhead

22

Spectre V2: Involves many mitigations

Many different mitigations, both hardware

and software.

(@]

See paper for a detailed look

- o 5 3
S F & 4
5 & ~ O]
s g s £ £
5] '§] ¥ ¥ N &
I ~ & ~N ~N
= s & & § § &
Mitigation % @ © ~ ~ N N N
Retpoline v v v v Y
IBRS
eIBRS v v v
RSB Stuffing v/ v v v v v v v
IBPB v v v v v v v Y

The different mitigations for Spectre V2 and which
processors use each.

23

Study 2: JavaScript
Sandbox

Octane 2

i

Firefox

:

Linux

24

Javascript sandbox overhead has not improved

Lower is better

-

Slowdown (%)

= = N N w w » H
o U o uu o w o wu
1 1 1 1 1 1 1 1

w
1

o
I

Speculative Store Bypass Disable
Other OS

Index Masking

Object Mitigations

Other Javascript

— e —

Broadwell Skylake Cascade Ice Lake Ice Lake Zen Zen 2 Zen 3
Client Lake Client Server
Intel AMD
> >

Newer Newer

No improvement across
generations

Slowdown is in relative terms:
Zen 3 is actually far faster than
any of the others

25

Speculative Store Bypass: Impacts Firefox if enabled

e Allour processors are vulnerable, but

45 -
H H 1 Speculative Store Bypass Disable
protection is opt-in. 40 1 — g —
35 I Index Masking
e Most programs do not use the mitigation. 30.- S ‘OblectMltigations
;@ Il Other Javascript i
. . . 25 ~
o Firefox did when we tested, but future versions %
o
seem not to. g
w0
e ISAprovides aflagto detect if a processor is
vulnerable.
. Broadwell Skylake Cascade Ice Lake Ice Lake Zen Zen 2 Zen3
o Suggests that future processors might not be. Client Lake Client Server

Intel AMD

JavaScript mitigation overhead

26

Spectre Vi: Only impacts Firefox

e Major slowdown for JavaScript.

e Mitigated using index masking, object
mitigations, and a few others.

o Automatically by a JIT (JavaScript)

o Ormanually applied by the programmer (C
code)

Slowdown (%)

45 ~
Speculative Store Bypass Disable

40 7 s Other OS
35 I Index Masking

Il Object Mitigations
30 1 B Other Javascript .
25
20 - = N

15 A

10 +

0_

Broadwel ake Cascade Ice Lake Ice Lake Zen Zen Zen
Client Lake Client Server

Intel AMD

JavaScript mitigation overhead

27

Takeaways

e Operating system boundary: new processors eliminate nearly all the overhead
e JavaScript sandboxing: overhead is still high
o Better Spectre V1 mitigations could have a big impact
e Overhead on new CPUs is only from Spectre V1, Spectre V2, and Speculative Store Bypass

o All three attacks have been known since 2018.

o Attacks discovered since don’t cause much overhead.

28

Limitations

e Workloads may not be representative of all applications

o Tofind out how your specific application is impacted, benchmark it!
e Some security boundaries aren’t covered (e.g. the eBPF-kernel boundary)
e Futureisuncertain:

o New processor generations might be different

o Other attacks might be discovered

o Existing mitigations might actually be flawed

29

Related work

e Many attack papers; a couple surveys including Hill [MICRO ‘19], Canella [CoRR ‘18], and Xiong
[ACS 22].

e Lots of work on hardware and software fixes.

o SpecShield [PACT ‘19], Speculative Taint Tracking [MICRO ‘19], NDA [MICRO ‘19], MuonTrap [ISCA ‘20], and
Speculative Data-Oblivious Execution [ISCA ‘20].

o Sitelsolation in Firefox and Chrome and Swivel [USENIX Security] all for WASM bytecode.

o Retpolines and Kernel Page Table Isolation.

e Top-level benchmarks from Phoronix and others.

o Wego further by attributing overheads to specific mitigations, and measuring Javascript mitigations.

30

Conclusion

github.com/mit-pdos/spectrebench

We benchmarked the effect of mitigations over a range of processor generations and workloads.
Hardware changes significantly speed up OS-level workloads, while JavaScript overheads remain.

JavaScript Spectre V1 mitigations are a good direction for further optimization.

Contact: jonathan@fintelia.io

31

