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Transient execution attacks break isolation

● Enable programs to access information 

they shouldn’t be able to.

● Different cases:

a. Program reading information from the OS

b. Program accessing information from 

another program

c. Leaking information between websites 

visited in the same web browser
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There are many different transient execution attacks 
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Mitigations restore security guarantees

● Involve either software changes or hardware 

fixes.

● Some have a large performance overhead, 

while others don’t.
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Contributions: Understanding the performance 
evolution of mitigations

● End-to-end performance study over generations of processors

● Detailed microbenchmarking of individual mitigations

● New technique to measure speculation (not covered in this talk)
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We evaluate the performance of mitigations not their security.



Memory

array

Example attack: Spectre V1
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// vulnerable if index >= SIZE
if (index < SIZE) {

  y = array[index];
  z = shared[y * CACHE_LINE];
}

// userspace attacker code
secret = is_in_cache(&shared[0]);

Cache

sharedsecret
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Example Mitigation
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// vulnerable if index >= SIZE
if (index < SIZE) {
  index &= ~(long)(index|(SIZE-1-index))>>63;
  y = array[index];
  z = shared[y * CACHE_LINE];
}

// userspace attacker code
secret = is_in_cache(&shared[0]);

Memory

Cache

sharedarray secret

Block out-of-bounds 
memory access



Understanding Performance 
Impact
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Approach: Evaluate a range of CPU generations

Intel
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Goal: Attribute overhead to mitigations

14

Mitigation#1

Mitigation #2

Mitigation #3O
ve

rh
ea

d
 (%

)



Workloads: focus on security boundaries

1. Operating system boundary

2. JavaScript sandbox

3. Virtual machines 

● Had minimal overhead; see paper for details
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Study 1:
Operating System 
Boundary
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Linux

LEBench [SOSP ‘19]



Operating system boundary overhead has decreased
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● Declined from 30% → 3%.

● Only a few attacks impact 

performance.



● Performance impact on Broadwell and 

Skylake Client 

● Adds 15% overhead to LEBench.

Microarchitectural Data Sampling (MDS)
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OS-level mitigation overhead



● Mitigated by executing a verw instruction 

after every system call.

● Adds 500+  cycles overhead to every system 

call.

● Only older Intel processors are vulnerable.

MDS: Hardware fix avoids costly mitigation
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Cycles required to perform the MDS mitigation



Meltdown: Also expensive to mitigate

● Same two processors are affected.

● Causes 10% overhead on LEBench.

20

OS-level mitigation overhead



Meltdown: Hardware fix avoids another mitigation
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● Mitigated using Kernel Page Table Isolation

○ Requires switching page tables on every 

system call entry and exit.

● Cost far exceeds time spent changing 

privilege modes.

● Again, only older Intel processors are 

vulnerable

Cycles spent on the mitigation during a system call



● Impacts all our processors.

● Overhead of 3-5% on LEBench.

Spectre V2: Still around but modest cost

22

OS-level mitigation overhead



● Many different mitigations, both hardware 

and software.

○ See paper for a detailed look

Spectre V2: Involves many mitigations
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The different mitigations for Spectre V2 and which 
processors use each.



Study 2: JavaScript 
Sandbox
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Javascript sandbox overhead has not improved
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● No improvement across 

generations

● Slowdown is in relative terms: 

Zen 3 is actually far faster than 

any of the others



Speculative Store Bypass: Impacts Firefox if enabled

● All our processors are vulnerable, but 

protection is opt-in.

● Most programs do not use the mitigation.

○ Firefox did when we tested, but future versions 

seem not to.

● ISA provides a flag to detect if a processor is 

vulnerable.

○ Suggests that future processors might not be.
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JavaScript mitigation overhead



Spectre V1: Only impacts Firefox

● Major slowdown for JavaScript.

● Mitigated using index masking, object 
mitigations, and a few others.

○ Automatically by a JIT (JavaScript)

○ Or manually applied by the programmer (C 

code)
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JavaScript mitigation overhead



Takeaways

● Operating system boundary: new processors eliminate nearly all the overhead

● JavaScript sandboxing: overhead is still high

○ Better Spectre V1 mitigations could have a big impact

● Overhead on new CPUs is only from Spectre V1, Spectre V2, and Speculative Store Bypass

○ All three attacks have been known since 2018.

○ Attacks discovered since don’t cause much overhead.
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Limitations

● Workloads may not be representative of all applications

○ To find out how your specific application is impacted, benchmark it!

● Some security boundaries aren’t covered (e.g. the eBPF-kernel boundary)

● Future is uncertain:

○ New processor generations might be different

○ Other attacks might be discovered

○ Existing mitigations might actually be flawed
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Related work

● Many attack papers; a couple surveys including Hill [MICRO ‘19], Canella [CoRR ‘18], and Xiong 
[ACS ‘22].

● Lots of work on hardware and software fixes.

○ SpecShield [PACT ‘19], Speculative Taint Tracking [MICRO ‘19], NDA [MICRO ‘19], MuonTrap [ISCA ‘20], and 
Speculative Data-Oblivious Execution [ISCA ‘20].

○ Site Isolation in Firefox and Chrome and Swivel [USENIX Security] all for WASM bytecode.

○ Retpolines and Kernel Page Table Isolation. 

● Top-level benchmarks from Phoronix and others.

○ We go further by attributing overheads to specific mitigations, and measuring Javascript mitigations.
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Conclusion

● We benchmarked the effect of mitigations over a range of processor generations and workloads.

● Hardware changes significantly speed up OS-level workloads, while JavaScript overheads remain.

● JavaScript Spectre V1 mitigations are a good direction for further optimization.
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github.com/mit-pdos/spectrebench Contact: jonathan@fintelia.io


