
Performance Evolution of
Mitigating Transient Execution
Attacks
Jonathan Behrens, Adam Belay, and M. Frans Kaashoek

1

MIT CSAIL

Transient execution attacks break isolation

● Enable programs to access information

they shouldn’t be able to.

● Different cases:

a. Program reading information from the OS

b. Program accessing information from

another program

c. Leaking information between websites

visited in the same web browser

2

VirtualBox

There are many different transient execution attacks

3

Mitigations restore security guarantees

● Involve either software changes or hardware

fixes.

● Some have a large performance overhead,

while others don’t.

4

Contributions: Understanding the performance
evolution of mitigations

● End-to-end performance study over generations of processors

● Detailed microbenchmarking of individual mitigations

● New technique to measure speculation (not covered in this talk)

5

We evaluate the performance of mitigations not their security.

Memory

array

Example attack: Spectre V1

6

// vulnerable if index >= SIZE
if (index < SIZE) {

 y = array[index];
 z = shared[y * CACHE_LINE];
}

// userspace attacker code
secret = is_in_cache(&shared[0]);

Cache

sharedsecret

Memory

array

Example attack: Spectre V1

7

// vulnerable if index >= SIZE
if (index < SIZE) {

 y = array[index];
 z = shared[y * CACHE_LINE];
}

// userspace attacker code
secret = is_in_cache(&shared[0]);

Cache

shared

y

secret

Memory

array

Example attack: Spectre V1

8

// vulnerable if index >= SIZE
if (index < SIZE) {

 y = array[index];
 z = shared[y * CACHE_LINE];
}

// userspace attacker code
secret = is_in_cache(&shared[0]);

Cache

shared

y z

secret

Memory

array

Example attack: Spectre V1

9

// vulnerable if index >= SIZE
if (index < SIZE) {

 y = array[index];
 z = shared[y * CACHE_LINE];
}

// userspace attacker code
secret = is_in_cache(&shared[0]);

Cache

sharedsecret

Memory

array

Example attack: Spectre V1

10

// vulnerable if index >= SIZE
if (index < SIZE) {

 y = array[index];
 z = shared[y * CACHE_LINE];
}

// userspace attacker code
secret = is_in_cache(&shared[0]);

Cache

sharedsecret

Example Mitigation

11

// vulnerable if index >= SIZE
if (index < SIZE) {
 index &= ~(long)(index|(SIZE-1-index))>>63;
 y = array[index];
 z = shared[y * CACHE_LINE];
}

// userspace attacker code
secret = is_in_cache(&shared[0]);

Memory

Cache

sharedarray secret

Block out-of-bounds
memory access

Understanding Performance
Impact

12

Approach: Evaluate a range of CPU generations

Intel

13

2014 2015 2016 2017 2018 2019 2020

Broadwell
Skylake
Client

Cascade Lake Ice Lake
Client

Ice Lake
Server

AMD

First attacks
discovered

Zen Zen 2 Zen 3

Hardware mitigations deployed

Goal: Attribute overhead to mitigations

14

Mitigation#1

Mitigation #2

Mitigation #3O
ve

rh
ea

d
 (%

)

Workloads: focus on security boundaries

1. Operating system boundary

2. JavaScript sandbox

3. Virtual machines

● Had minimal overhead; see paper for details

15

2

1

VirtualBox

3

Study 1:
Operating System
Boundary

16

Linux

LEBench [SOSP ‘19]

Operating system boundary overhead has decreased

17

Lo
w

er
 is

 b
et

te
r

Newer Newer

● Declined from 30% → 3%.

● Only a few attacks impact

performance.

● Performance impact on Broadwell and

Skylake Client

● Adds 15% overhead to LEBench.

Microarchitectural Data Sampling (MDS)

18

OS-level mitigation overhead

● Mitigated by executing a verw instruction

after every system call.

● Adds 500+ cycles overhead to every system

call.

● Only older Intel processors are vulnerable.

MDS: Hardware fix avoids costly mitigation

19

Cycles required to perform the MDS mitigation

Meltdown: Also expensive to mitigate

● Same two processors are affected.

● Causes 10% overhead on LEBench.

20

OS-level mitigation overhead

Meltdown: Hardware fix avoids another mitigation

21

● Mitigated using Kernel Page Table Isolation

○ Requires switching page tables on every

system call entry and exit.

● Cost far exceeds time spent changing

privilege modes.

● Again, only older Intel processors are

vulnerable

Cycles spent on the mitigation during a system call

● Impacts all our processors.

● Overhead of 3-5% on LEBench.

Spectre V2: Still around but modest cost

22

OS-level mitigation overhead

● Many different mitigations, both hardware

and software.

○ See paper for a detailed look

Spectre V2: Involves many mitigations

23

The different mitigations for Spectre V2 and which
processors use each.

Study 2: JavaScript
Sandbox

24

Linux

Firefox

Octane 2

Javascript sandbox overhead has not improved

25

Lo
w

er
 is

 b
et

te
r

Newer Newer

● No improvement across

generations

● Slowdown is in relative terms:

Zen 3 is actually far faster than

any of the others

Speculative Store Bypass: Impacts Firefox if enabled

● All our processors are vulnerable, but

protection is opt-in.

● Most programs do not use the mitigation.

○ Firefox did when we tested, but future versions

seem not to.

● ISA provides a flag to detect if a processor is

vulnerable.

○ Suggests that future processors might not be.

26

JavaScript mitigation overhead

Spectre V1: Only impacts Firefox

● Major slowdown for JavaScript.

● Mitigated using index masking, object
mitigations, and a few others.

○ Automatically by a JIT (JavaScript)

○ Or manually applied by the programmer (C

code)

27

JavaScript mitigation overhead

Takeaways

● Operating system boundary: new processors eliminate nearly all the overhead

● JavaScript sandboxing: overhead is still high

○ Better Spectre V1 mitigations could have a big impact

● Overhead on new CPUs is only from Spectre V1, Spectre V2, and Speculative Store Bypass

○ All three attacks have been known since 2018.

○ Attacks discovered since don’t cause much overhead.

28

Limitations

● Workloads may not be representative of all applications

○ To find out how your specific application is impacted, benchmark it!

● Some security boundaries aren’t covered (e.g. the eBPF-kernel boundary)

● Future is uncertain:

○ New processor generations might be different

○ Other attacks might be discovered

○ Existing mitigations might actually be flawed

29

Related work

● Many attack papers; a couple surveys including Hill [MICRO ‘19], Canella [CoRR ‘18], and Xiong
[ACS ‘22].

● Lots of work on hardware and software fixes.

○ SpecShield [PACT ‘19], Speculative Taint Tracking [MICRO ‘19], NDA [MICRO ‘19], MuonTrap [ISCA ‘20], and
Speculative Data-Oblivious Execution [ISCA ‘20].

○ Site Isolation in Firefox and Chrome and Swivel [USENIX Security] all for WASM bytecode.

○ Retpolines and Kernel Page Table Isolation.

● Top-level benchmarks from Phoronix and others.

○ We go further by attributing overheads to specific mitigations, and measuring Javascript mitigations.

30

Conclusion

● We benchmarked the effect of mitigations over a range of processor generations and workloads.

● Hardware changes significantly speed up OS-level workloads, while JavaScript overheads remain.

● JavaScript Spectre V1 mitigations are a good direction for further optimization.

31

github.com/mit-pdos/spectrebench Contact: jonathan@fintelia.io

