
Performance Evolution of Mitigating
Transient Execution Attacks

Jonathan Behrens
behrensj@mit.edu

MIT CSAIL
Cambridge, Massachusetts, USA

Adam Belay
abelay@mit.edu

MIT CSAIL
Cambridge, Massachusetts, USA

M. Frans Kaashoek
kaashoek@mit.edu

MIT CSAIL
Cambridge, Massachusetts, USA

Abstract
Today’s applications pay a performance penalty for mitiga-
tions to protect against transient execution attacks such as
Meltdown [32] and Spectre [25]. Such a reduction in perfor-
mance directly translates to higher operating costs and de-
graded user experience. This paper measures the performance
impact of these mitigations across a range of processors from
multiple vendors and across several security boundaries to
identify trends over successive generations of processors and
to attribute how much of the overall slowdown is caused by
each individual mitigation.

We find that overheads for operating system intensive work-
loads have declined by as much as 10×, down to about 3%
on modern CPUs, due to hardware changes that eliminate
the need for the most expensive mitigations. Meanwhile, a
JavaScript benchmark reveals approximately 20% overhead
persists today because mitigations for Spectre V1 and Spec-
ulative Store Bypass have not become more efficient. Other
workloads like virtual machines and single-process, compute-
intensive applications did not show significant slowdowns on
any of the processors we measured.

CCS Concepts: • Security and privacy → Side-channel
analysis and countermeasures; Systems security.

Keywords: Transient execution attack, speculative execution,
Spectre, Meltdown

ACM Reference Format:
Jonathan Behrens, Adam Belay, and M. Frans Kaashoek. 2022.
Performance Evolution of Mitigating Transient Execution Attacks .
In Seventeenth European Conference on Computer Systems (EuroSys

’22), April 5–8, 2022, RENNES, France. ACM, New York, NY, USA,
15 pages. https://doi.org/10.1145/3492321.3519559

EuroSys ’22, April 5–8, 2022, RENNES, France
© 2022 Copyright held by the owner/author(s).
ACM ISBN 978-1-4503-9162-7/22/04.
https://doi.org/10.1145/3492321.3519559

1 Introduction
Transient execution attacks are a class of side channel at-
tacks that leak information across privilege domains using
a processor’s microarchitectural details. Spectre and Melt-
down were the first—but far from only—of these attacks to
be discovered.

From the end-user perspective, a significant concern from
transient execution attacks is the performance degradation
they cause. This is because operating systems and applications
have deployed mitigations to restore their previous security
guarantees, but those same mitigations make systems slower.
This highly-visible impact on user experience has been mea-
sured by Phoronix and others [31, 38, 44]. This paper goes
further and attributes overheads to individual mitigations to
understand which ones matter to overall performance. The
paper also studies internal JavaScript runtime mitigations to
understand whether the performance impact on browsers is
different from operating systems.

We seek to answer the following questions: Which attacks
are primarily responsible for the performance impact, and
does that vary across processors or workloads? (§4) What
drives the cost of mitigations for those attacks? (§5) What
mitigations would benefit from hardware support to lower
their cost and what predictions can we make about mitigation
overheads going forward? (§7)

To answer these questions we first consider the end-to-
end impact of transient execution attacks. Across a range of
benchmarks, we characterize the overhead caused by miti-
gations on each CPU and further attribute how much of the
overall slowdown is caused by each individual mitigation.
This end-to-end evaluation guides our microbenchmarking of
individual mitigations. For mitigations that incurs meaningful
overhead, we investigate their performance in detail.

Our measurements focus on security boundaries because
mitigations for transient execution attacks usually involve do-
ing extra work for each boundary crossing, often in the form
of flushing of microarchitectural state or waiting for in-flight
operations to complete. Each of our workloads are chosen to
stress a different security boundary. We measure the boundary
between user mode and kernel mode, the boundaries between
JavaScript sandboxes, and the boundary between a guest OS
and a hypervisor. Furthermore, we confirm that mitigation
overheads are low in the absence of security boundaries.

251

This work is licensed under a Creative Commons Attribution International 4.0 License.

https://doi.org/10.1145/3492321.3519559
https://doi.org/10.1145/3492321.3519559
https://creativecommons.org/licenses/by/4.0/
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3492321.3519559&domain=pdf&date_stamp=2022-03-28


EuroSys ’22, April 5–8, 2022, RENNES, France Jonathan Behrens, Adam Belay, and M. Frans Kaashoek

Our experiments cover a range of processors including both
some that predate the discovery of Spectre and Meltdown—
which are still in active use—and more recent ones which
incorporate a range of new hardware-based mitigations. We
evaluate five processors from Intel and three AMD processors,
allowing us to compare across vendors as well.

The primary contribution of this paper is to draw attention
to the performance critical areas for improving transient exe-
cution mitigations, driven by (1) an end-to-end survey of how
mitigation costs have evolved over processor generations, and
(2) detailed microbenchmarking of individual mitigations. To
analyze hardware mitigations for Spectre V2, we also con-
tribute a new technique to measure speculation using ideas
from Bölük [7]. Our benchmarks and analysis code are avail-
able online at github.com/mit-pdos/spectrebench.

The primary conclusions of the study are as follows. Over-
head in the OS boundary has mostly been eliminated, but the
browser boundary is still expensive. A simple way to reduce
overheads significantly without compromising security is to
replace older CPUs with newer models. Most overheads that
still exist are caused by a small number of software mitiga-
tions, all addressing attacks that were discovered in 2018
or earlier, while all attacks published since have mitigations
with only minor performance impact. Hardware designers
should focus on migrating these last few expensive software
mitigations to silicon.

There are some limitations. Our benchmark workloads may
not be representative of all applications. We consider several
security boundaries but not all (e.g., we don’t study the eBPF/-
kernel boundary). We are limited in the number of processor
generations we can evaluate and at the same time the proces-
sors we do consider are diverse in terms of clock speed, core
count, power draw, and many other dimensions. The conclu-
sions we draw are constrained by the lack of public details on
how hardware mitigations are implemented. Finally, new at-
tacks may require new mitigations with additional overheads,
and existing mitigations may contain flaws, requiring fixes
that could change their performance characteristics.

The rest of the paper is organized as follows. §2 relates
this paper to previous work. §3 describes transient-execution
attacks and their mitigations from a performance perspective.
§4 measures the penalty of mitigations on several end-to-end
workloads. §5 analyzes individual mitigations that have sig-
nificant impact on end-to-end performance. §6 zooms in on
Spectre V2 mitigations. §7 presents ideas for how to reduce
the lingering performance impact of mitigations. §9 summa-
rizes our conclusions.

2 Related Work
The mitigations this paper explores became necessary af-
ter the discovery of Meltdown [32] and the original Spec-
tre [25] variants. These were rapidly followed by the discov-
ery of more attacks targeting transient execution, including

MDS [11, 43, 47], Speculative Store Bypass [18], and many
others [6, 8, 9, 13, 26, 39, 45, 48, 51]. Several survey papers
categorize the known attacks [10, 16, 52].

Many of these attacks have now been fixed in produc-
tion hardware [20]. Other attacks require more substantial
changes [1, 3, 50, 53, 54], which generally involve somehow
delaying the use of speculative data until it is safe. Although
such defenses are more comprehensive, they have higher over-
heads that impact performance whenever speculation occurs.
And since an enormous number of older processors are still in
active use, software defenses are also essential. For operating
systems, these include KAISER [15] and retpolines [21].

These defenses have not always worked as well as hoped.
Concurrently with this work, researchers discovered issues
with several of the Spectre V2 mitigations [4, 34].

User-space sandboxing requires its own set of techniques.
Swivel [36] is a compiler framework which hardens WASM
bytecode against attack, while Firefox’s and Chrome’s WASM
engines rely on Site Isolation [40]. Production JavaScript en-
gines deploy more targeted mitigations like Pointer Poisoning
and Index Masking [37], and also reduce the overall timer pre-
cision [37, 49]. Compiler techniques like Speculative Load
Hardening [12] ensure binaries are completely immune to
Spectre, albeit at considerable overhead.

Simakov [44] and Prout [38] conducted early performance
studies on the impact of transient execution attacks, but the
most comprehensive results come from the many articles
published by Phoronix [28, 29, 31]. This prior work provides
top-line numbers on the total overhead, but does not attribute
costs to individual mitigations nor measure the impact of
JavaScript level mitigations.

The Linux community has paid close attention to the cost of
mitigations throughout, including for IBRS [46], KPTI [14],
and MDS [28]. Their efforts has played a role in both under-
standing and driving down the performance overheads. Where
this work stands out is by looking at many different genera-
tions of CPUs and characterizing the performance impacts of
the set of mitigations deployed in practice.

3 Background: Attacks and Mitigations
We consider attacks from the the perspective of how they
affect end-user performance. This outlook differs from prior
surveys like Canella, et al. [10] which focus on enumerating
and classifying the space of possible attacks.

3.1 Meltdown-Type Attacks
Meltdown-type attacks exploit the processor’s fault-handling
logic to speculatively access privileged state.

Meltdown [32]. The original Meltdown attack is caused
by speculatively translating addresses for kernel pages even
while running in user mode, which enables a user process to
read any kernel memory mapped into its address space before
the processor aborts speculation and raises a fault. At the time

252

https://github.com/mit-pdos/spectrebench


Performance Evolution of Mitigating Transient Execution Attacks EuroSys ’22, April 5–8, 2022, RENNES, France

Attack Mitigation Br
oa

dw
ell

Sk
yl

ak
e C

lie
nt

Ca
sc

ad
e L

ak
e

Ic
e L

ak
e C

lie
nt

Ic
e L

ak
e S

er
ve

r

Ze
n

Ze
n

2

Ze
n

3

Meltdown Page Table Isolation ✓ ✓

L1TF PTE Inversion ✓ ✓
Flush L1 Cache ✓ ✓

LazyFP Always save FPU ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Spectre V1 Index Masking ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
lfence after swapgs ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Spectre V2

Generic Retpoline ✓ ✓
AMD Retpoline ✓ ✓ ✓
IBRS
Enhanced IBRS ✓ ✓ ✓
RSB Stuffing ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓
IBPB ✓ ✓ ✓ ✓ ✓ ✓ ✓ ✓

Spec. Store Bypass SSBD ! ! ! ! ! ! ! !

MDS Flush CPU Buffers ✓ ✓ ✓
Disable SMT ! ! !

Table 1. Default mitigations used by Linux on each processor for our experiments. A ✓in a given cell means the mitigation used,
while an empty space means it isn’t required. In some cases, preventing an attack requires some mitigation that isn’t enabled by
default, which is indicated by a ! symbol.

of discovery, existing processors from Intel as well as some
from IBM and ARM were vulnerable [2, 19, 23].

Software mitigations for Meltdown are expensive, requir-
ing a page table switch on every user-kernel boundary cross-
ing. Processors made by other vendors—and those designed
after the attack was discovered—do not engage in this kind
of speculation, so they can avoid these software overheads.

L1 Terminal Fault [51]. On certain Intel processors, the
present bit in a page table entry (PTE) is ignored during
speculative execution, which can allow an attacker to leak
L1 cache contents. Operating system software can easily be
adjusted to make sure no vulnerable page table entries are
included in the page tables, which mitigates the attack at
virtually zero cost.

However, when running a hypervisor, the same specula-
tive mechanisms also bypass the nested page table. Taken
together, if the hypervisor doesn’t flush the L1 cache before
every VM entry, it risks leaking recently accessed data from
other privilege domains. Both the flush operation itself and
subsequent cache misses make this mitigation more costly.

LazyFP [45]. Traditionally, when exposing floating point
hardware to user processes, operating systems would optimize
context switch time by lazily saving and restoring FPU state.
In particular, the assumption was that many processes would
not access floating point state, so on a context switch the
FPU would be marked disabled, but retain the floating point

registers from the previously running process. Any attempt
to execute floating point instructions would trigger a trap,
during which the OS could save the old process’s floating
point registers and load in the registers for the current process.

During transient execution, some processors will ignore the
enable bit on the FPU and allow computation on the floating
point registers even if they actually belong to a different
process, potentially leaking sensitive register contents to an
attacker.

Linux’s mitigates LazyFP by always saving and restoring
FPU state during context switches. Amusingly, this mitiga-
tion speeds up certain workloads, because modern processors
provide fast instructions for saving and restoring this state
(e.g., xsaveopt) [33]. As a result, the trap handling overhead
is often higher than the cost of unconditionally saving and
restoring the registers.

3.2 Spectre-Type Attacks
Spectre-style attacks exploit speculative execution following
a misprediction. They typically target a gadget that performs
two memory loads; see Figure 1 for an example. The first load
brings sensitive data into a register, and the second uses that
value to index into a large array. An attacker is later able to
determine the result of the first load by measuring which array
entry was pulled into the cache. This forms the backbone of
various Spectre attacks.

253



EuroSys ’22, April 5–8, 2022, RENNES, France Jonathan Behrens, Adam Belay, and M. Frans Kaashoek

Vendor Model Microarchitecture Power (W) Clock Speed (GHz) Cores

Intel

E5-2640v4 Broadwell (2014) 90 2.4 10
i7-6600U Skylake Client (2015) 15 2.6 2
Xeon Silver 4210R Cascade Lake (2019) 100 2.4 10
i5-10351G1 Ice Lake Client (2019) 15 1.0 4
Xeon Gold 6354 Ice Lake Server (2021) 205 3.0 18

AMD
Ryzen 3 1200 Zen (2017) 65 3.1 4
EPYC 7452 Zen 2 (2019) 155 2.35 32
Ryzen 5 5600X Zen 3 (2020) 65 3.7 6

Table 2. Information about each of the CPUs we evaluate. All except the Ryzen 3 1200 have 2-way SMT ("hyperthreads" in Intel
terminology).

1 int x = array[index];

2 int y = array2[x * 256];

Figure 1. A Spectre gadget. If this code sequence is executed
(even speculatively) it will alter the contents of the CPU cache,
making it possible for an attacker to learn the value of x, or if
index is attacker controlled, all of virtual memory.

Spectre V1 [25]. The bounds-check-bypass variant of Spec-
tre works by tricking the processor into doing an out-of-
bounds array access by speculatively executing the body of
an if statement. Software mitigations usually entail manually
annotating kernel branches with lfence instructions or array
accesses with special macros that never read out of bounds.

Spectre V2 [25]. Modern CPUs use a Branch Target Buffer
(BTB) to predict the targets of indirect branches. At a high
level, a BTB is table mapping from instruction address to
the last jump target for the branch instruction located at that
address. Processors use BTBs so they can speculatively start
executing code following an indirect branch before resolving
the true target of that branch. Poisoning the BTB enables at-
tacker code to make the CPU mispredict the targets of indirect
branches and route transient execution to specially chosen
Spectre gadgets.

There is no single mitigation for Spectre V2. It is com-
monly mitigated by replacing every indirect branch with a ret-
poline sequence [21] that prevents speculative execution, plus
additional kernel logic to flush the BTB on context switches
to protect user processes from one another.

Speculative Store Bypass [18]. This attack exploits store-
to-load forwarding in modern processors to learn the contents
of recently written memory locations. The only available mit-
igation is a processor mode called Speculative Store Bypass
Disable (SSBD), but enabling it has severe negative perfor-
mance impacts. Given the difficulty of exploiting Speculative
Store Bypass and the considerable cost of mitigating it, by
default SSBD is only used by Linux for processes that specif-
ically opt in to it via prctl or seccomp.

3.3 Microarchitectural Data Sampling (MDS)
Microarchitectural Data Sampling describes a class of attacks
involving leaks from various microarchitectural buffers within
the CPU [11, 43, 47]. Unlike other Spectre and Meltdown
variants, MDS attacks cannot be targeted to specific victim
addresses, which makes them more challenging to exploit.

From an attacker perspective there are many different vari-
ations of MDS with their own specific mechanisms and ca-
pabilities. However, mitigations all fall into two categories:
specific microarchitectural buffers need to be cleared on every
privilege domain crossing or hyperthreading must be disabled
to prevent an attacker and victim from simultaneously run-
ning on the same physical core. Clearing these CPU buffers is
costly because of how frequently it must be done. Not using
hyperthreading would have an even larger cost, but by default
hyperthreading is enabled even for vulnerable CPUs because
the risk was viewed acceptable given the performance differ-
ence.

4 End-to-End Benchmarks
We start by evaluating the total cost attributable to all mitiga-
tions for transient execution attacks. This value is different for
each individual CPU, so we compare both across generations
of processors and between vendors. Our goal is to gain a high
level understanding of which mitigations are relevant from a
performance perspective.

The primary impact of transient execution attacks is to
leak information across protection boundaries. Accordingly,
mitigations to prevent such leakage often involve extra opera-
tions when the CPU transitions from one protection domain
to another. Alternatively, some mitigations must be enabled
continuously while untrusted code is being executed. Based
on this, we focus on several particularly relevant protection
boundaries: the user-kernel interface for the operating system,
and the sandboxing that web browsers’ JavaScript engines
provide between execution contexts for different sites. The
boundary between a hypervisor and its guest operating system
is also notable, but we did not find significant performance

254



Performance Evolution of Mitigating Transient Execution Attacks EuroSys ’22, April 5–8, 2022, RENNES, France

differences between running virtualization workloads with
and without mitigations enabled.

In addition, we consider the case of a compute-intensive
workload running within a single operating system process.
This involves no protection boundary crossings, and thus
measures only the impact of mitigations the operating system
keeps enabled all the time.

4.1 Methodology
In the experiments we use eight different CPU microarchi-
tectures from two vendors. Considering different microarchi-
tectures enables us to observe design improvements between
successive releases. The processors we evaluate span from
before the discovery of Spectre and Meltdown (Broadwell,
Skylake Client, and Zen) to the most recently available Intel
mobile and server microarchitectures (Ice Lake Client and
Server respectively) and AMD microarchitecture (Zen 3). De-
spite sharing the same name, Ice Lake Client and Ice Lake
Server are different microarchitectures and were designed
separately. Table 2 lists out detailed information on each CPU
and Table 1 indicates which mitigations are used on each.

This diversity of systems gives a broad view of the ecosys-
tem, but all the different dimensions they vary on complicates
our work. The processors range from 1.0 GHz to 3.7 GHz and
from 2 cores to 32 cores. Newer ones incorporate not just de-
sign improvements, but also tend to have smaller transistors,
faster RAM, and so forth. For these reasons our experiments
focus primarily on relative differences between configurations
of the same machine. All machines have an up-to-date kernel
as of October 2021: either version 5.11, the 5.14 release, or
the 5.4 long-term maintenance release.

To measure the impact of individual mitigations, we run
Linux with the default set of mitigations enabled, and then
use kernel boot parameters to successively disable them to
determine the overhead that each one causes. Some mitiga-
tions are applied separately by Firefox, which we control via
its about:config interface.

When we started running experiments, variability observed
on a single configuration was frequently on the same scale
as the overheads we were trying to measure. Additional
techniques were required to account for this. We adopted a
methodology of running each benchmark configuration many
times while tracking the average and 95%-confidence interval,
stopping once the error was small enough. Benchmark scores
for individual runs of the same configuration would vary by a
couple percent each time, but the many iterations give us an
accurate estimate of the true average.

4.2 LEBench
LEBench [41] is a collection of microbenchmarks for measur-
ing specific operating system operations.1 In this experiment,

1We use the version of the LEBench benchmarks distributed with the WARD

system [5], which addresses a few issues with the original.

Broadwell Skylake
Client

Cascade
Lake

Ice Lake
Client

Ice Lake
Server

Intel

0

5

10

15

20

25

30

35

Sl
ow

do
wn

 (%
)

Zen Zen 2 Zen 3

AMD

 Clear CPU buffers
 Meltdown Mitigations
 Spectre V2 Mitigations
 Other

Figure 2. The overhead of mitigations on the LEBench bench-
mark suite which stresses the operating system interface. Er-
ror bars show 95% confidence intervals.

we track the geometric mean of benchmarks from the suite.
As seen in Figure 2 the overhead has decreased sharply for
newer processors: CPUs that incorporate hardware mitiga-
tions (for Intel) or from a vendor whose CPUs were never
vulnerable to some of the attacks (AMD) exhibit substantially
smaller overheads.

Also notable is that only a small number of mitigations are
responsible for nearly all of the overheads. Collectively, all
unlisted mitigations caused a fraction of a percent slowdown
on Zen 2, but on the other processors had no statistically-
significant impact at all.

4.3 Octane 2
Octane 2 is a benchmark for JavaScript performance, which
we run from within Firefox. Figure 3 plots the percent de-
crease in scores caused by enabling each mitigation in turn.
JavaScript mitigations (Index masking, object mitigations,
and “other JavaScript”) are shown in blue, while operating
system controlled mitigations including Speculative Store By-
pass Disable (SSBD) and “other OS” are shown above them
in green.

All JavaScript mitigations are implemented by the JIT en-
gine inserting extra instructions into the generated instruction
stream, and are used to prevent different variations of the
Spectre V1 attack. For instance, index masking ensures that
speculative accesses to an array do not index past the end of
an array. It does so by placing a conditional move instruction
before every array access which checks whether the access
is in bounds and overwrites the index with zero otherwise.
This check overall takes very little time but it prevents the
CPU from starting to pull the array contents into cache until
the array length is known. Across many millions of array
accesses in the Octane 2 benchmark, this ends up causing a
non-trivial cost.

255



EuroSys ’22, April 5–8, 2022, RENNES, France Jonathan Behrens, Adam Belay, and M. Frans Kaashoek

Broadwell Skylake
Client

Cascade
Lake

Ice Lake
Client

Ice Lake
Server

Intel

0

5

10

15

20

25

30

35

40

45

Sl
ow

do
wn

 (%
)

Zen Zen 2 Zen 3

AMD

Speculative Store Bypass Disable
Other OS
Index Masking
Object Mitigations
Other Javascript

Figure 3. Slowdown on the Octane 2 browser benchmark
caused by JavaScript and operating system level mitigations.

Speculative Store Bypass Disable is an OS level mitigation
that is disabled by default for most processes, but on the
kernel versions we’re using is enabled for Firefox because it
uses seccomp. Starting with Linux 5.16 released in January
2022, the kernel by default no-longer enables the mitigation
for seccomp processes [30]. Applications can still enable the
mitigation manually, but Firefox releases so far don’t override
the kernel setting.

This mitigation may stop being relevant. Intel has reserved
a bit in in the ARCH_CAPABILITIESmodel-specific register to
indicate that a given processor isn’t vulnerable to Speculative
Store Bypass and therefore that the associated mitigation is
neither needed nor implemented. However, we do not know of
any CPUs for either vendor that set that bit, not even models
that came out years after the attack was discovered.

4.4 Virtual Machine Workloads
We measure two different virtual machine workloads rele-
vant to how VMs are used in production. The performance
of running LEBench inside of a virtual machine with and
without host mitigations enabled mirrors running a customer
application on a cloud provider. Execution primarily (but not
exclusively) stays within the VM so we would expect host
mitigations to have limited impact on the performance ob-
served by the guest. This matches our observations: measured
overhead was ±3% on all systems, signaling that the mitiga-
tions applied by a hypervisor do not have significant impact.
Some runs suggested a slowdown in the range of 1-3%, but
our methodology resulted in too much variability between
runs to be confident whether or not that was caused by noise.
In any case, we were unable to attribute the slowdown to
specific mitigations because the slowdowns are so small.

Secondly, we measure the overhead of virtual machine exits
by running the smallfile and largefile microbenchmarks from
LFS [42] against an emulated disk. The median overhead was

under 2%, but once again, we observed high variability be-
tween runs. This workload performs many security boundary
crossings because every access to the emulated disk requires
running code within the hypervisor. However, in contrast to
LEBench that reached millions of system calls per second,
the higher cost of VM exits meant that this experiment only
reached several tens of thousands of VM exits per second. We
believe that this explains the lack of a clear slowdown; the
comparatively small number of protection domain crossings
means that even though the time spent on mitigations during
a single VM exit is likely higher than for a system call, in
relative terms it is not enough to meaningfully impact the
end-to-end performance.

4.5 PARSEC
As a final experiment we measure the overhead of running
the swaptions, facesim, and bodytrack benchmarks from the
PARSEC suite. These were chosen to get good coverage of
compute-intensive benchmarks with different working set
sizes. None involve significant numbers of calls into the op-
erating system nor user-level sandboxing, as explored by the
previous experiments, which makes them ideal to measure the
impact solely of “always on” mitigations that the OS applies
to running processes.

We were unable to observe any meaningful difference be-
tween running with and without the default set of mitigations:
total runtime was usually within ±0.5% for the two configu-
rations, and never differed by more than 2%. This serves as
a reminder that slowdowns from transient execution attack
mitigations aren’t relevant to all workloads.

The one exception is that we observed significant overheads
by force-enabling mitigations for Speculative Store Bypass.
§5.5 explores this in more detail.

4.6 Summary
Each of these benchmarks plots a different trajectory of miti-
gation costs. Workloads that stress the operating system in-
terface have received the most attention, and overheads on
LEBench have gone from over 30% on older Intel CPUs to un-
der 3% on the latest models, thanks to fixes for several of the
attacks. By contrast, none of the attacks impacting JavaScript
performance have been addressed in hardware and overhead
on Octane 2 has remained in the range of 15% to 25%. Our
compute-intensive benchmark has negligible overhead regard-
less of the processor, and we did not observe significant over-
heads on either of the two VM workloads measured. These
trends are consistent with prior work from Phoronix [31],
which found big improvements on OS workloads (perf-bench,
ctx_clock, etc.), moderate but consistent overheads for web
browsers (Selenium), and minimal overheads for the more
compute-intensive workloads.

There has been a significant effort from computer architec-
ture researchers towards addressing Spectre V1 [1, 3, 50, 53,
54], but interestingly software mitigations for the attack had

256



Performance Evolution of Mitigating Transient Execution Attacks EuroSys ’22, April 5–8, 2022, RENNES, France

no measurable impact on LEBench performance. By contrast,
they account for around half the overhead on the browser
workload.

It is also worth pointing out that all three attacks with sig-
nificant overhead on new processor are actually quite “old”.
Spectre V1 and Spectre V2 were the first transient execu-
tion attacks discovered (along with Meltdown, which was
discovered at the same time), while Speculative Store Bypass
followed only a matter of months later. Over the subsequent
three years of transient execution attack discoveries, they’ve
all either been quickly resolved in hardware or had a negli-
gible cost to mitigate in software. This paints an optimistic
outlook for the future (assuming this trend remains true).

5 Performance of Individual Mitigations
This section explores the individual mitigations that had sig-
nificant performance impact to the previously shown end-to-
end overheads. Our aim is to understand why some mitigation
costs have declined while others have not. Furthermore, we
also want to understand whether moving mitigations from
software to hardware truly makes them faster.

For each mitigation, we attempt to isolate the relevant
instruction sequence and examine what the cost is on each
of our processors. To achieve precise timings, we rely on the
timestamp counter functionality available on x86 and average
over one million runs to eliminate noise.

5.1 Meltdown
Meltdown mitigations account for one of the most substantial
performance impacts on LEBench, single-handedly causing
an around 10% overhead. On processors vulnerable to Melt-
down, production operating systems use page table isolation
(PTI) to mitigate it. This approach adds significant overhead
to every user-kernel boundary crossing, because it requires
switching the page tables every time via a mov %cr3 instruc-
tion. Among the systems we evaluated, only Broadwell and
Skylake are vulnerable to Meltdown.

As seen in Table 3, on these processors the cycles required
to swap page tables when entering and again on leaving the
kernel far exceeds the time for the actual syscall or sysret
instruction that triggers the entry/exit. For syscalls, the Ice
Lake Client CPU takes fewer cycles (which will prove a
pattern—likely due to its lower base clock speed) and the
Cascade Lake model stands out by taking longer than both
earlier and later Intel models.

One other impact of page table isolation is that on old
processors it can cause increased TLB pressure due to much
more frequent TLB flushes. Both Broadwell and Skylake
Client, however, support PCIDs which tag page table entries
with a process identifier. This allow many TLB flushes to be
avoided, and makes TLB impacts marginal compared to the
direct cost of switching the root page table pointer.

CPU syscall sysret swap cr3
Broadwell 49 40 206
Skylake Client 42 42 191
Cascade Lake 70 43 N/A

Ice Lake Client 21 29 N/A

Ice Lake Server 45 32 N/A

Zen 63 53 N/A

Zen 2 53 46 N/A

Zen 3 83 55 N/A

Table 3. Average cycles to execute a syscall or sysret in-
struction, and for vulnerable processors, to swap page tables.

5.2 Microarchitectural Data Sampling
The other substantial mitigation on LEBench is clearing CPU
buffers, which is required to mitigate Microarchitectural Data
Sampling (MDS). On processors that are vulnerable to MDS,
a microcode patch extends the verw instruction to also imple-
ment this clearing functionality. Without the patch the verw
only has its old behavior related to segmentation.

Table 4 shows that the cost of performing this flush is
approximately 500 cycles. This cost is substantial because
microarchitectural buffers must be flushed not just on context
switches between processes but also on every kernel-to-user
privilege transition. Recent Intel processors and all processors
from AMD are not vulnerable to MDS. On these processors
the verw has only its legacy segmentation-related behavior
and takes only tens of cycles.

Vendor CPU Clear Cycles

Intel

Broadwell 610
Skylake Client 518
Cascade Lake 458
Ice Lake Client N/A

Ice Lake Server N/A

AMD
Zen N/A

Zen 2 N/A

Zen 3 N/A

Table 4. Cycles required to clear microarchitectural buffers
using the verw instruction on processors vulnerable to MDS.

5.3 Spectre V2
Spectre V2 involves poisoning the branch target buffer so
that an indirect branch in victim code jumps to a Spectre
gadget. As we saw, mitigating Spectre V2 is a small but
largely consistent drag on LEBench performance across all
the processors.

Indirect Branch Restricted Speculation. Indirect Branch
Restricted Speculation (IBRS) was the first mitigated pro-
posed for Spectre V2 and is enabled by setting a MSR bit

257



EuroSys ’22, April 5–8, 2022, RENNES, France Jonathan Behrens, Adam Belay, and M. Frans Kaashoek

which must be repeated on every entry into the kernel. Newer
Intel processors—Cascade Lake and onward—support en-
hanced IBRS (eIBRS), which allows the operating system to
enable IBRS once at boot time, and have it remain in effect
without additional system register writes.

Retpoline. The cycle cost of doing this MSR write on every
system call was viewed as unacceptably high [46], so produc-
tion operating systems investigated alternative approaches,
ultimately settling on retpolines for any processor not support-
ing eIBRS. This makes them the primary software mitigation
for Spectre V2 today.

Retpolines involve replacing every indirect branch in the
kernel with an alternate instruction sequence. A retpoline
sequence has identical behavior to an indirect branch instruc-
tion, except that the branch destination (and more importantly
any Spectre gadgets) are never jumped to speculatively.

There are a couple variations of retpolines, with slightly
different characteristics. So called “generic retpolines” use a
code sequence involving a call instruction, a write instruc-
tion to replace the saved return address with the jump target,
and a ret instruction to cause the processor to speculatively
jump back to the call site (due to the return value stack) before
correcting to the intended branch target. This version works
on both Intel and AMD processors.

An alternative version “AMD retpoline”, involves simply
doing an lfence followed by a normal indirect branch. As
might be inferred from the name, this variant is not intended to
work on Intel: code using it would still be vulnerable to Spec-
tre V2. Concurrently with this work, however, researchers
discovered a race condition that causes them to not protect
AMD processors either [34]. Linux subsequently switched to
prefer generic retpolines on AMD [27].

1 generic_retpoline:

2 call 2f ; Jump forward to line 6

3 1: pause ; [skipped]

4 lfence ; [skipped]

5 jmp 1b ; [skipped] Jump back to line 3

6 2: mov %r11, (%rsp) ; overwrite return address

7 ret ; Jump to target destination

8

9 amd_retpoline:

10 lfence ; Wait for loads to complete

11 call *%r11 ; Jump to address in r11

Figure 4. Assembly sequences for the two kinds of retpolines

Table 5 shows extra cycles of each of these variations across
our machines, relative to a baseline of doing an unsafe indirect
branch. One noticeable takeaway is that IBRS adds tens of
cycles of overhead to indirect branches except on processors
with eIBRS support (Cascade Lake and the two Ice Lake
CPUs) where it is inexpensive. Retpolines, however, can be
as or even more costly.

The AMD processors have different performance executing
AMD retpolines: on the Zen 2 model we measure no overhead
compared to a normal indirect branch, while the other AMD
processors they are even slower than a generic retpoline.

CPU Baseline IBRS Generic AMD
Broadwell 16 +32 +28 N/A

Skylake Client 11 +15 +19 N/A

Cascade Lake 3 +0 +49 N/A

Ice Lake Client 5 +0 +21 N/A

Ice Lake Server 1 +1 +50 N/A

Zen 30 N/A +25 +28
Zen 2 3 +13 +14 +0
Zen 3 23 +19 +13 +18

Table 5. Cycles to perform an indirect branch with either no
mitigations, IBRS enabled, using generic retpolines, or using
AMD retpolines.

Indirect Branch Prediction Barrier (IBPB). In addition
to preventing indirect branches in the kernel from being hi-
jacked, it is also important that one user process cannot launch
a Spectre V2 attack against another process. To prevent this
attack, on every context switch between processes the operat-
ing system triggers an Indirect Branch Prediction Barrier [22]
to clear the branch target buffer. To do so, the OS executes
a wrmsr instruction to set bit zero in the IA32_PRED_CMD
Model Specific Register.

We verified across all our processors that executing an
IBPB between poisoning the branch target buffer and per-
forming an indirect branch prevents execution from being
routed to the attacker-controlled target. Interestingly, how-
ever, we noticed that the performance counters report that
indirect branches executed after an IBPB result in mispredic-
tions. We speculate that this behavior is caused by the IBPB
setting all entries in the branch target buffer to point to a
specific harmless gadget rather than simply clearing them.

Table 6 shows that the cost of an IBPB has generally de-
clined over time from many thousands of cycles on the Broad-
well server to hundreds of cycles on Cascade Lake and Ice
Lake Server. This improvement is likely related to the fact
that older processors implemented IBPB via a microcode
patch, whereas newer ones may have some amount of support
in hardware. The Ice Lake Client processor somewhat bucks
the trend of improving performance when compared to the
earlier Cascade Lake, but still requires many fewer cycles
than Broadwell or Skylake. AMD processors we tested show
a similar improvement across generations.

Return Stack Buffer Filling. When a user process em-
ploys generic retpolines to protect itself from Spectre V2,
it is counting on the return stack buffer not being tampered
with during the code sequence. Unfortunately, if the operating
system triggers a context switch at an inopportune time then

258



Performance Evolution of Mitigating Transient Execution Attacks EuroSys ’22, April 5–8, 2022, RENNES, France

Vendor CPU IBPB cycles

Intel

Broadwell 5600
Skylake Client 4500
Cascade Lake 340
Ice Lake Client 2500
Ice Lake Server 840

AMD
Zen 7400
Zen 2 1100
Zen 3 800

Table 6. Average cycles to execute an indirect branch specu-
lation barrier.

this condition might be violated. Linux uses two approaches
to guarantee that user-level retpolines still work despite inter-
rupts potentially happening at any time during execution.

The first is a static analysis pass over the Linux kernel at
build time to ensure that the operating system itself doesn’t
have unbalanced call and ret pairs anywhere, which incurs
no runtime cost at all. Since any code compiled with the
regular toolchains will already have this property, this check
is not expected ever to fail.

Secondly, when context switching between different user
threads Linux will fill the the return stack buffer with harmless
entries. This is required so that any interrupted retpoline se-
quence will avoid jumping to any Spectre gadgets—meaning
that despite not causing a speculative jump to the intended
retpoline landing point, it will still produce safe results.

Table 7 shows the cycles required to fill the return stack
buffer on each processor. There is improvement across gen-
erations of Intel processors but less of a clear trend across
the AMD CPUs. These changes are likely realized more by
improving performance overall than trying to optimize for
return stack buffer filling specifically, but regardless, the cost
of these mitigations is relatively minor compared to the total
overhead of doing a context switch between processes (which
takes at least several thousand cycles)

Vendor CPU RSB Fill Cycles

Intel

Broadwell 130
Skylake Client 130
Cascade Lake 120
Ice Lake Client 40
Ice Lake Server 69

AMD
Zen 114
Zen 2 68
Zen 3 94

Table 7. Cycles to stuff the RSB.

Return stack buffer filling also provides protection against
variations of SpectreRSB [26], which exploits the return stack
buffer itself. Thus while the overall toggle to enable the

functionality is controlled by Linux’s nospectre_v2 option,
some amount of the overhead attributed to Spectre V2 should
probably be accounted to mitigating SpectreRSB instead.

5.4 Spectre V1
On the Octane 2 benchmarks, the various Spectre V1 mitiga-
tions collectively accounted for a large fraction of the total
overhead. We discuss each of them in more detail.

lfence. One mitigation for Spectre V1 is to execute an
lfence instruction immediately following each bounds check
and swapgs instruction. This instruction waits until all prior
loads have resolved, thereby preventing any subsequent Spec-
tre gadget from executing. The cost of an lfence varies
significantly based on operations in flight. Table 8 shows the
results of a simple microbenchmark of running an lfence
instruction in a loop. An important caveat is that the perfor-
mance will depend a lot on what other instructions have been
executed prior so this is not a fully representative experiment.

We see that all times are roughly of the same scale, with
newer processors showing better performance. The lfence
does more work on AMD than on Intel (as evidenced by the
AMD retpoline sequence described earlier) so the numbers
are not directly comparable across vendors.

Vendor CPU lfence cycles

Intel

Broadwell 28
Skylake Client 20
Cascade Lake 15
Ice Lake Client 8
Ice Lake Server 13

AMD
Zen 48
Zen 2 4
Zen 3 30

Table 8. Cycles to execute a single lfence instruction on each
machine. In real applications, the cost will heavily depend on
the other loads in flight.

Index Masking. Instead of preventing speculation past
bounds checks, an alternative mitigation is to force the array
index to zero for any out of bounds access. SpiderMonkey
(the JavaScript engine used by Firefox) uses this strategy:
before every array indexing operation it inserts a cmov in-
struction that overwrites the array index with zero if it would
be past the end of the array. Unlike in many compiled lan-
guages, JavaScript always knows the lengths of arrays so
this mitigation can be applied automatically to the generated
assembly. On the committed execution path the conditional
move will always be a no-op (because as a safe language
JavaScript always does bounds checks), but in the speculative
case it blocks execution until the array length has resolved.
Our measurements of the Octane 2 benchmark suite indicate

259



EuroSys ’22, April 5–8, 2022, RENNES, France Jonathan Behrens, Adam Belay, and M. Frans Kaashoek

this approach incurs a roughly 4% performance overhead on
most of the systems.

Object Mitigations. Since JavaScript is dynamically typed,
the compiler must insert many runtime checks on the types of
variables. This presents another possible avenue for Spectre
V1 attacks, because mis-speculating an object’s type can
cause its fields to be misinterpreted [24], potentially resulting
in out of bounds memory reads. The mitigation is similar to
index masking: object guards insert a conditional move that
zeros out the object pointer if the check fails. This mitigation
incurs an overhead on Octane 2 on the order of 6% on the
tested processors.

5.5 Speculative Store Bypass

Broadwell Skylake
Client

Cascade
Lake

Ice Lake
Client

Ice Lake
Server

Intel

0

5

10

15

20

25

30

35

Sl
ow

do
wn

 (%
)

Zen Zen 2 Zen 3

AMD

 swaptions
 facesim
 bodytrack

Figure 5. The slowdown caused by Speculative Store Bypass
Disable on three benchmarks from the PARSEC suite.

Speculative Store Bypass exploits the processor’s store-to-
load forwarding to enable an attacker to learn the contents
of recently written memory locations. The only available
defense against the attack is to enable a processor mode called
Speculative Store Bypass Disable (SSBD) that blocks this
forwarding. A downside is that this can come at substantial
cost, even when normal non-malicious code is being run.

The compromise reached by the Linux developers was to
enable SSBD only for processes which opted into it via its
prctl or seccomp interfaces. To see the full impact of this
mitigation if enabled all the time, we measured the slowdown
it causes to some benchmarks from PARSEC. Figure 5 shows
that the slowdown can be as much as 34%, and is trending
worse over time. It isn’t entirely clear why this would be the
case, but it may be related to newer processors have a more
complete SSBD implementation compared to what was pos-
sible via microcode patches. These overheads are especially
considerable given that the combined impact of all default
mitigations for these benchmarks is generally well under one
percent (§4.5).

5.6 L1 Terminal Fault
One other attack worth mentioning is L1 Terminal Fault,
which can leak the entire contents of the L1 cache when page
tables contain PTEs with certain bit patterns. Linux avoids
ever creating such PTEs, which can be done with essentially
no overhead. This is consistent with it not showing up in our
end-to-end performance study earlier.

However, the problem is more severe when virtual ma-
chines are involved because an untrusted guest operating
system could insert such specially crafted PTEs into its own
page table. Doing so would enable it to learn L1 cache con-
tents lingering from memory accesses done by the host. The
necessary mitigation on vulnerable processors is for the host
to flush the L1 cache prior to entering a guest virtual machine.

Our benchmarking of virtual machine workloads did not
show any measurable impact from enabling this mitigation
and it has also been patched on newer processors, so the
relevance should be minimal going forward.

5.7 Other attacks
The attacks discussed so far are hardly the only transient exe-
cution attacks discovered. Many others like System Register
Read [35], and so forth have commanded significant time and
attention for computer architects, operating system develop-
ers, and security researchers. However, the cost they incur on
workloads today seems to be minimal, so we skip evaluating
them individually.

6 Analysis of Hardware Spectre V2
Mitigations

For nearly all the attacks we’ve looked at so far, either the
mitigation approach has remained the same across all the
processor generations we’ve studied, or it has gone from an
expensive software mitigation to a hardware fix with no mea-
surable cost at all. Spectre V2 notably does not follow this
trajectory. It has an array of hardware and software mitiga-
tions, yet remains a non-trivial expense on every CPU we’ve
tested. In this section we attempt to understand under which
conditions the Branch Target Buffer is used to speculatively
execute instructions and when not.

6.1 Measuring Speculation
To understand when CPUs speculatively execute instructions,
we need a method to determine what instructions are being
speculatively executed by the CPU. Bölük [7] describes a
technique using performance counters to determine whether
a processor starts speculatively executing at a given address,
which we adopt to probe the behavior of the Branch Target
Buffer, as we describe next.

The performance counters are specific to an individual gen-
eration of CPU and provide detailed information about mi-
croarchitectural events. All our processors have a performance
counter to measure the number of cycles that the divider (the

260



Performance Evolution of Mitigating Transient Execution Attacks EuroSys ’22, April 5–8, 2022, RENNES, France

With intervening system call No system call
Vendor CPU user→kernel user→user kernel→kernel user→user kernel→kernel

Intel

Broadwell ✓ ✓ ✓ ✓ ✓
Skylake Client ✓ ✓ ✓ ✓ ✓
Cascade Lake ✓ ✓ ✓ ✓
Ice Lake Client ✓ ✓ ✓ ✓
Ice Lake Server ✓ ✓ ✓ ✓

AMD
Zen ✓ ✓ ✓ ✓ ✓
Zen 2 ✓ ✓ ✓ ✓ ✓
Zen 3

Table 9. Whether the processor will speculatively execute an indirect branch in the given configuration when IBRS is disabled. A
check mark in column X→Y indicates that training the branch target buffer in mode X is able to control the target of a subsequent
victim indirect branch in mode Y, either with or without an intervening syscall and/or sysret instruction between them.

With intervening system call No system call
Vendor CPU user→kernel user→user kernel→kernel user→user kernel→kernel

Intel

Broadwell
Skylake Client
Cascade Lake ✓ ✓ ✓ ✓
Ice Lake Client ✓ ✓
Ice Lake Server ✓ ✓ ✓ ✓

AMD
Zen N/A N/A N/A N/A N/A

Zen 2
Zen 3

Table 10. Same as Table 9 but with IBRS enabled. IBRS always prevents problematic cases like user→kernel, but on many
processors blocks all speculation including predicting the target of userspace indirect branches based on prior branches done by
the same process (user→user). The entries for Zen are marked N/A because that processor does not support IBRS.

component within the CPU that executes divide instructions)
is active. Some also have a dedicated performance counter
to indicate the number of mispredicted indirect branches. By
reading one of these counters before and after a block of in-
structions, we can tell whether executing that code triggered
any of the relevant operations.

Figure 6 sketches out how we use this method to know
whether code at a specific target location was executed spec-
ulatively. We execute indirect branches that may potentially
be mispredicted as targeting a specially constructed landing
pad, and see whether we measure any use of the divider cor-
responding to executing instructions at the landing pad. Care
has to be taken to ensure no divide instructions are executed
by the committed execution trace.

Interestingly, we sometimes observed mispredicted indi-
rect branches without any divide instructions being performed,
which we interpret as the processor speculatively executing in-
structions at a different location than the one we attempted to
poison the branch target buffer with. For this reason, we focus
on the performance counter for cycles with the divider active
even when the other performance counter is also available.

Prior work discovered that for a Spectre V2 attack, only
some bits of the virtual and physical addresses have to match

between the victim and attacker [17]. However, to maximize
the chance of success, we ensure all 64 bits match by sharing
the same page of memory between the victim and attacker.

6.2 Results
Tables 9 and 10 show the results produced using this method-
ology. The columns indicate the mode that the attacker and
victim run in respectively (e.g., user→kernel is the classic
configuration of a user-space attacker trying to misdirect a
victim running in kernel space). We also indicate the presence
of an intervening syscall instruction.

Not shown in that figure, we also attempted to run the at-
tacker in kernel mode and the victim in user mode. This is not
reflective of a real world attack scenario, but it revealed that
the same attacks processors vulnerable to the user→kernel
version were vulnerable to a kernel→user attack.

One final note is that we did not manage to poison the
branch target buffer at all on our Zen 3 processor. We sus-
pect this isn’t because it is immune to the attack, but rather
due to some change to the Branch History Buffer (used to
compute the index for the branch target buffer) or another
implementation detail that experiments did not account for.

261



EuroSys ’22, April 5–8, 2022, RENNES, France Jonathan Behrens, Adam Belay, and M. Frans Kaashoek

1 void victim_target() {

2 int c = 12345 / 6789;

3 }

4 void nop_target() {

5 // do nothing

6 }

7

8 void(*target)();

9

10 void test() {

11 // configure performance counter to measure

12 // whether the divider is active

13 configure_pmc(ARITH_DIVIDER_ACTIVE);

14

15 // train the branch target buffer

16 target = victim_target;

17 for (int i = 0; i < 1024; i++)

18 divide_happened();

19

20 // potentially overwrite the entry

21 ...

22

23 // measure whether the trained entry is

24 // jumped to speculatively

25 target = nop_target;

26 if (divide_happened())

27 printf("victim_target ran speculatively!");

28 }

29

30 bool divide_happened() {

31 // fill branch history buffer

32 for (int i = 0; i < 128; i++)

33 ;

34

35 // flush branch target from cache

36 clflush(target);

37

38 // read performance counter

39 int start = rdpmc();

40

41 // perform the indirect branch

42 (*target)();

43

44 // see whether performance counter changed

45 return rdpmc() > start;

46 }

Figure 6. Sketch of our approach. The test function prints
whether it was able to poison the branch target buffer to route
speculative execution to victim_target.

6.2.1 Indirect Branch Restricted Speculation. Recall that
the original version of Indirect Branch Restricted Speculation
(IBRS) was the first mitigation proposed for Spectre V2 but
is not used by default on any production operating system
because it requires an expensive write to a model-specific
register on every entry into the kernel.

According to Intel documentation, this mitigation prevents
indirect branches executed from less privileged modes from
impacting the predicted destination of indirect branches in
more privileged modes. We experimentally validated this
claim by poisoning the branch target buffer and then seeing
whether the processor would speculatively jump to the pro-
grammed branch destination. Our measurements indicated
that toggling this mitigation caused the user space code to
be unable to redirect kernel execution. However, subsequent
experiments (replicated in Table 10) revealed that on pre-
Spectre processors, IBRS was disabling all indirect branch
prediction both in user space and kernel space. Not having this
prediction even for user processes incurs a high performance
cost.

6.2.2 Enhanced IBRS (eIBRS). Enhanced IBRS provides
the same guarantees as the original IBRS but doesn’t require
an MSR write on every kernel entry. Given the lackluster per-
formance of IBRS compared to retpolines, that may not seem
promising, but the presence of this feature signals more seri-
ous mitigations built into the hardware. In particular, eIBRS
does not disrupt indirect branch prediction at the same privi-
lege level. When it is available, Linux by default uses eIBRS
instead of retpolines.

As seen in Table 10, Cascade Lake and the two Ice Lake
processors (the microarchitectures that support eIBRS) both
do indirect branch prediction only based on prior indirect
branches executed in the same privilege mode. We specu-
late this is achieved by using a branch target buffer that is
either partitioned or tagged using a bit indicating the current
privilege mode.

When running with eIBRS enabled, we have observed that
kernel entries (caused by page faults, the syscall instruc-
tion, etc.) have bimodal performance. Most times they take
a similar number of cycles (on the order of 70 cycles), but
one in every 8 to 20 or so entries they take an additional 210
cycles. On the same processor, when running without eIBRS
the time is always 70 cycles.

We have been unable to fully determine what is causing
this behavior, but a few patterns have emerged. Under some
conditions, the slow system calls will happen exactly every
eight times, meanwhile at other times the processor will go
long stretches without any slow syscalls. Additionally, we
have sometimes observed behavior consistent with the branch
target buffer being flushed only during slow kernel entries:
poisoning the branch target buffer in the kernel prior to a sys-
tem call causes misprediction of subsequent indirect branches
in kernel mode only if the intervening kernel entry was fast.
Monitoring performance counters reveal that slow system
calls involve both executing more micro ops and more cycles
spent stalling, but do not provide a clear hint of what those
additional micro ops are doing.

262



Performance Evolution of Mitigating Transient Execution Attacks EuroSys ’22, April 5–8, 2022, RENNES, France

The documentation for eIBRS doesn’t make any promises,
but the functionality may be intended as additional protection
against attempts to misdirect indirect branches.

6.3 Takeaways
The original IBRS design not only added substantial over-
head to every kernel entry, it also blocked indirect branch
speculation everywhere. eIBRS improves on this by seem-
ingly partitioning or tagging the branch target buffer based
on the CPU privilege mode.

Partitioning / tagging the branch target buffer however is
not a complete mitigation for Spectre V2. User processes still
need their own defenses and even within the kernel indirect
branches executed by the operating system could be used to
mistrain the branch target buffer to misdirect subsequent oper-
ating system indirect branches. In concurrent work, Barberis
et al. demonstrate a practical attack against eIBRS [4].

7 Discussion
Spectre V1. One takeaway from the previous sections is

the continued impact of Spectre V1. There are no hardware
mitigations available for the attack in high performance com-
mercial CPUs. And yet, despite being among the first transient
execution attacks discovered, it still presents a significant—
and largely unchanging—overhead when mitigated in soft-
ware.

Because Spectre V1 mitigations are specifically applied by
JIT engines doing code generation, they also may present a
unique opportunity for computer architects. The JIT annotates
each vulnerable gadget with a leading cmov instruction. This
pattern of a conditional move followed by a load instruction
could be detected by hardware to trigger special handling.

Even if this approach proves unworkable, that doesn’t rule
out hardware acceleration for Spectre V1 mitigations. JIT
engines generate code on the fly based on the processor they
are running on, which means that unlike native applications,
the author of a given JavaScript application doesn’t need to
be involved in porting/recompiling it to leverage a new ISA
extension. And since current web browsers generally receive
new updates on a short release cycle, any new hardware could
be leveraged quickly.

Speculative Store Bypass. Speculative Store Bypass Dis-
able was initially implemented in microcode, and while we
cannot tell whether more recent CPUs include actual hard-
ware changes as well, the performance overhead hasn’t im-
proved. This attack in particular also emphasizes the need to
look at the performance impacts of transient execution attacks
across representative workloads. Despite being disabled by
default, Speculative Store Bypass Disable incurs a substantial
overhead on JavaScript execution in web browsers—one of
the most common workloads run by end-users.

This may be changing however. Linux 5.16 released in Jan-
uary 2022 has a different default configuration for Speculative

Store Bypass. Going forward, processes that use seccomp but
do not specifically request SSBD will not have the mitigation
enabled. This is particularly notable because Firefox currently
falls in that category. It remains to be seen whether Mozilla
will issue a patch to restore the old mitigation behavior, but
if not, this could be a signal that SSBD was never actually
required in the first place.

Additionally, Intel’s inclusion of a hardware capability to
detect whether a processor is vulnerable to Speculative Store
Bypass (without a way to toggle it) strongly suggests that
they believe future hardware will be able to prevent the attack
with negligible overhead.

8 Summary
Our goal was to answer a number of questions, which we now
revisit.

Which attacks have the greatest performance impact? We
found that the primary impact on current processors comes
from mitigations for Spectre V1 and V2, and Speculative
Store Bypass. These are some of the earliest attacks discov-
ered: the first two are described in the first transient execution
attack paper, and the third was discovered only a matter of
months later. On operating system intensive workloads, older
Intel processors also incur significant costs from Meltdown
and MDS, but these have been resolved on the newest models.

What drives the cost of mitigations for those attacks?
Other than Indirect Branch Prediction Barriers which address
one component of Spectre V2, mitigations themselves have
not been getting substantially faster. The performance im-
provement for operating system workloads can be explained
by no longer needing many of the most expensive mitigations.

What predictions can we make about mitigation over-
heads going forward? We cannot know for sure, but there is
reason to be optimistic. None of the attacks discovered in the
last several years have much performance impact and there is
potential that new CPUs may be able to mitigate Spectre V1
or Speculative Store Bypass with lower overhead. If the re-
cent change in Linux to use SSBD in fewer places is adopted
broadly, then a hardware mitigation for the latter attack may
not even be required.

9 Conclusions
This paper assesses the evolution of performance penalties for
mitigations against transient execution attacks by measuring
their overheads across several generation of Intel and AMD
CPUs.

On post-2018 processors, overhead from the OS bound-
ary has mostly been eliminated in hardware. This means the
high mitigation costs have been largely resolved for server
workloads. At the same time, JavaScript sandboxing is still ex-
pensive. Across both workloads, most overheads that remain
are caused by a small number of software mitigations, all

263



EuroSys ’22, April 5–8, 2022, RENNES, France Jonathan Behrens, Adam Belay, and M. Frans Kaashoek

addressing attacks that were discovered in 2018 or earlier and
attacks published since require mitigations with only minor
performance impact for recent processors.

A further analysis of individual mitigations shows that
the performance of most mitigation code sequences remains
relatively unchanged, and that hardware fixes are responsible
for nearly all of the speedup. Spectre V1 and Speculative
Store Bypass mitigations are significant and haven’t declined
across processor generations. However, it may be possible to
reduce these overheads of these mitigations with hardware
changes too; for example, the Spectre V1 mitigation has a
recognizable pattern of a conditional move followed by a load
instruction, which could be detected by hardware to trigger
special handling in the future.

10 Acknowledgments
We would like to thank the anonymous reviewers and our
shepherd, Luigi Rizzo for their comments and suggestions.
We also thank Nickolai Zeldovich and Mengjia Yan for the
valuable feedback they provided on this work. This work was
partially supported by a Facebook Research Award.

References
[1] AINSWORTH, S., AND JONES, T. M. Muontrap: Preventing cross-

domain spectre-like attacks by capturing speculative state. In Pro-
ceedings of the ACM/IEEE 47th Annual International Symposium on
Computer Architecture (2020), ISCA ’20, IEEE Press, p. 132–144.

[2] ARM, LTD. Cache speculation side-channels. https:
//developer.arm.com/support/arm-security-updates/speculative-
processor-vulnerability, 2020.

[3] BARBER, K., BACHA, A., ZHOU, L., ZHANG, Y., AND TEODOR-
ESCU, R. SpecShield: Shielding speculative data from microarchitec-
tural covert channels. In Proceedings of the 28th International Confer-
ence on Parallel Architectures and Compilation Techniques (Seattle,
WA, Sept. 2019), pp. 151–164.

[4] BARBERIS, E., FRIGO, P., MUENCH, M., BOS, H., AND GIUFFRIDA,
C. Branch History Injection: On the Effectiveness of Hardware Mitiga-
tions Against Cross-Privilege Spectre-v2 Attacks. In USENIX Security
(Aug. 2022). Intel Bounty Reward.

[5] BEHRENS, J., CAO, A., SKEGGS, C., BELAY, A., KAASHOEK, M. F.,
AND ZELDOVICH, N. Efficiently mitigating transient execution attacks
using the unmapped speculation contract. In Proceedings of the 14th
USENIX Symposium on Operating Systems Design and Implementa-
tion (OSDI) (Banff, Alberta, Canada, Nov. 2020).

[6] BHATTACHARYYA, A., SANDULESCU, A., NEUGSCHWANDTNER,
M., SORNIOTTI, A., FALSAFI, B., PAYER, M., AND KURMUS, A.
Smotherspectre: Exploiting speculative execution through port con-
tention. In Proceedings of the 2019 ACM SIGSAC Conference on
Computer and Communications Security (New York, NY, USA, 2019),
CCS ’19, Association for Computing Machinery, p. 785–800.

[7] BÖLÜK, C. Speculating the entire x86-64 instruction set in seconds
with this one weird trick. https://blog.can.ac/2021/03/22/speculating-
x86-64-isa-with-one-weird-trick/, March 2021.

[8] BULCK, J. V., MINKIN, M., WEISSE, O., GENKIN, D., KASIKCI,
B., PIESSENS, F., SILBERSTEIN, M., WENISCH, T. F., YAROM, Y.,
AND STRACKX, R. Foreshadow: Extracting the keys to the Intel SGX
kingdom with transient out-of-order execution. In Proceedings of
the 27th USENIX Security Symposium (Baltimore, MD, Aug. 2018),
pp. 991–1008.

[9] BULCK, J. V., MOGHIMI, D., SCHWARZ, M., LIPP, M., MINKIN, M.,
GENKIN, D., YAROM, Y., SUNAR, B., GRUSS, D., AND PIESSENS,
F. LVI: Hijacking transient execution through microarchitectural load
value injection. 2020 IEEE Symposium on Security and Privacy (SP)
(2020), 54–72.

[10] CANELLA, C., BULCK, J. V., SCHWARZ, M., LIPP, M., VON BERG,
B., ORTNER, P., PIESSENS, F., EVTYUSHKIN, D., AND GRUSS, D.
A systematic evaluation of transient execution attacks and defenses.
CoRR abs/1811.05441 (2018).

[11] CANELLA, C., GENKIN, D., GINER, L., GRUSS, D., LIPP, M.,
MINKIN, M., MOGHIMI, D., PIESSENS, F., SCHWARZ, M., SUNAR,
B., BULCK, J. V., AND YAROM, Y. Fallout: Leaking data on Meltdown-
resistant CPUs. In Proceedings of the 26th ACM Conference on Com-
puter and Communications Security (CCS) (London, United Kingdom,
Nov. 2019), pp. 769–784.

[12] CARRUTH, C. Speculative load hardening. https://llvm.org/docs/
SpeculativeLoadHardening.html, 2018.

[13] CHEN, G., CHEN, S., XIAO, Y., ZHANG, Y., LIN, Z., AND LAI, T. H.
SgxPectre: Stealing intel secrets from sgx enclaves via speculative
execution. In 2019 IEEE European Symposium on Security and Privacy
(EuroS P) (2019), pp. 142–157.

[14] GREGG, B. KPTI/KAISER meltdown initial performance regres-
sions. https://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-
meltdown-performance.html, 2018.

[15] GRUSS, D., LIPP, M., SCHWARZ, M., FELLNER, R., MAURICE,
C., AND MANGARD, S. KASLR is dead: Long live KASLR. In
Proceedings of the 9th International Symposium on Engineering Secure
Software and Systems (Bonn, Germany, July 2017), pp. 161–176.

[16] HILL, M. D., MASTERS, J., RANGANATHAN, P., TURNER, P., AND

HENNESSY, J. L. On the Spectre and Meltdown processor security
vulnerabilities. IEEE Micro 39, 2 (2019), 9–19.

[17] HORN, J. Reading privileged memory with a side-channel.
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-
memory-with-side.html, January 2018.

[18] HORN, J. Speculative execution, variant 4: speculative store bypass.
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528, Feb-
ruary 2018.

[19] IBM. Potential impact on the processors in the power fam-
ily. https://www.ibm.com/blogs/psirt/potential-impact-processors-
power-family/, 2019.

[20] INTEL, I. Affected processors: Transient execution attacks & related
security issues by CPU. https://software.intel.com/content/www/us/
en/develop/topics/software-security-guidance/processors-affected-
consolidated-product-cpu-model.html, 2021.

[21] INTEL, INC. Deep dive: Retpoline: A branch target injection miti-
gation. https://software.intel.com/security-software-guidance/deep-
dives/deep-dive-retpoline-branch-target-injection-mitigation.

[22] INTEL, INC. Indirect branch predictor barrier. https://www.intel.com/
content/www/us/en/developer/articles/technical/software-security-
guidance/technical-documentation/indirect-branch-predictor-
barrier.html, 2018.

[23] INTEL, INC. Software guidance: Rogue data cache load.
https://software.intel.com/security-software-guidance/software-
guidance/rogue-data-cache-load, 2018.

[24] KIRZNER, O., AND MORRISON, A. An analysis of speculative type
confusion vulnerabilities in the wild. In 30th USENIX Security Sym-
posium (USENIX Security 21) (Aug. 2021), USENIX Association,
pp. 2399–2416.

[25] KOCHER, P., HORN, J., FOGH, A., GENKIN, D., GRUSS, D., HAAS,
W., HAMBURG, M., LIPP, M., MANGARD, S., PRESCHER, T.,
SCHWARZ, M., AND YAROM, Y. Spectre attacks: Exploiting specula-
tive execution. In Proceedings of the 40th IEEE Symposium on Security
and Privacy (San Francisco, CA, May 2019), pp. 19–37.

264

https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://developer.arm.com/support/arm-security-updates/speculative-processor-vulnerability
https://llvm.org/docs/SpeculativeLoadHardening.html
https://llvm.org/docs/SpeculativeLoadHardening.html
https://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
https://www.brendangregg.com/blog/2018-02-09/kpti-kaiser-meltdown-performance.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://googleprojectzero.blogspot.com/2018/01/reading-privileged-memory-with-side.html
https://bugs.chromium.org/p/project-zero/issues/detail?id=1528
https://www.ibm.com/blogs/psirt/potential-impact-processors-power-family/
https://www.ibm.com/blogs/psirt/potential-impact-processors-power-family/
https://software.intel.com/content/www/us/en/develop/topics/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://software.intel.com/content/www/us/en/develop/topics/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://software.intel.com/content/www/us/en/develop/topics/software-security-guidance/processors-affected-consolidated-product-cpu-model.html
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-retpoline-branch-target-injection-mitigation
https://software.intel.com/security-software-guidance/deep-dives/deep-dive-retpoline-branch-target-injection-mitigation
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-predictor-barrier.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-predictor-barrier.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-predictor-barrier.html
https://www.intel.com/content/www/us/en/developer/articles/technical/software-security-guidance/technical-documentation/indirect-branch-predictor-barrier.html
https://software.intel.com/security-software-guidance/software-guidance/rogue-data-cache-load
https://software.intel.com/security-software-guidance/software-guidance/rogue-data-cache-load


Performance Evolution of Mitigating Transient Execution Attacks EuroSys ’22, April 5–8, 2022, RENNES, France

[26] KORUYEH, E. M., KHASAWNEH, K. N., SONG, C., AND ABU-
GHAZALEH, N. Spectre returns! speculation attacks using the return
stack buffer. In Proceedings of the 12th USENIX Conference on Of-
fensive Technologies (USA, 2018), WOOT’18, USENIX Association,
p. 3.

[27] KROAH-HARTMAN, G. Linux 5.15.28 release announcement. https:
//lwn.net/Articles/887638/, Mar. 2022.

[28] LARABEL, M. The performance impact of MDS / Zombieload
plus the overall cost now of Spectre/Meltdown/L1TF/MDS.
https://www.phoronix.com/scan.php?page=article&item=mds-
zombieload-mit, 2019.

[29] LARABEL, M. Looking at the linux performance two years after spectre
/ meltdown mitigations. https://www.phoronix.com/scan.php?page=
article&item=spectre-meltdown-2, 2020.

[30] LARABEL, M. Linux 5.16 loosens the spectre defaults around ssbd
/ stibp. https://www.phoronix.com/scan.php?page=news_item&px=
Linux-5.16-Spectre-SECCOMP-To-P, Nov. 2021.

[31] LARABEL, M. A look at the cpu security mitigation costs three years
after spectre/meltdown. https://www.phoronix.com/scan.php?page=
article&item=3-years-specmelt&num=1, 2021.

[32] LIPP, M., SCHWARZ, M., GRUSS, D., PRESCHER, T., HAAS, W.,
FOGH, A., HORN, J., MANGARD, S., KOCHER, P., GENKIN, D.,
YAROM, Y., AND HAMBURG, M. Meltdown: Reading kernel mem-
ory from user space. In Proceedings of the 27th USENIX Security
Symposium (Baltimore, MD, Aug. 2018), pp. 973–990.

[33] LUTOMIRSKI, A. [patch] x86/fpu: Hard-disable
lazy fpu mode. https://lore.kernel.org/lkml/
CALCETrV9rXJOgdBY9Wyardo0NETA1meCEM_C4-e+
SYsZAoUU7A@mail.gmail.com, 2016.

[34] MILBURN, A., SUN, K., AND KAWAKAMI, H. You cannot always
win the race: Analyzing the lfence/jmp mitigation for branch target
injection. arXiv preprint arXiv:2203.04277 (2022).

[35] MITRE CORPORATION. Cve-2018-3640. https://cve.mitre.org/cgi-
bin/cvename.cgi?name=CVE-2018-3640, 2018.

[36] NARAYAN, S., DISSELKOEN, C., MOGHIMI, D., CAULIGI, S., JOHN-
SON, E., GANG, Z., VAHLDIEK-OBERWAGNER, A., SAHITA, R.,
SHACHAM, H., TULLSEN, D. M., AND STEFAN, D. Swivel: Hard-
ening webassembly against spectre. In USENIX Security Symposium
(2021).

[37] PIZLO, F. What spectre and meltdown mean for webkit. https://webkit.
org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/, 2018.

[38] PROUT, A., ARCAND, W., BESTOR, D., BERGERON, B., BYUN, C.,
GADEPALLY, V., HOULE, M., HUBBELL, M., JONES, M., KLEIN,
A., MICHALEAS, P., MILECHIN, L., MULLEN, J., ROSA, A., SAMSI,
S., YEE, C., REUTHER, A., AND KEPNER, J. Measuring the impact
of spectre and meltdown. In 2018 IEEE High Performance extreme
Computing Conference (HPEC) (2018), pp. 1–5.

[39] RAGAB, H., MILBURN, A., RAZAVI, K., BOS, H., AND GIUFFRIDA,
C. CrossTalk: Speculative data leaks across cores area real. In Pro-
ceedings of the 42nd IEEE Symposium on Security and Privacy (San
Francisco, CA, May 2021).

[40] REIS, C., MOSHCHUK, A., AND OSKOV, N. Site isolation: Process
separation for web sites within the browser. In 28th USENIX Secu-
rity Symposium (USENIX Security 19) (Santa Clara, CA, Aug. 2019),
USENIX Association, pp. 1661–1678.

[41] REN, X. J., RODRIGUES, K., CHEN, L., VEGA, C., STUMM, M.,
AND YUAN, D. An analysis of performance evolution of Linux’s core
operations. In Proceedings of the 27th ACM Symposium on Operating
Systems Principles (SOSP) (Huntsville, Ontario, Canada, Oct. 2019),
pp. 554–569.

[42] ROSENBLUM, M., AND OUSTERHOUT, J. The design and implemen-
tation of a log-structured file system. In Proceedings of the 13th ACM
Symposium on Operating Systems Principles (SOSP) (Pacific Grove,
CA, Oct. 1991), pp. 1–15.

[43] SCHWARZ, M., LIPP, M., MOGHIMI, D., VAN BULCK, J., STECK-
LINA, J., PRESCHER, T., AND GRUSS, D. ZombieLoad: Cross-
privilege-boundary data sampling. In Proceedings of the 26th ACM
Conference on Computer and Communications Security (CCS) (Lon-
don, United Kingdom, Nov. 2019), pp. 753–768.

[44] SIMAKOV, N. A., INNUS, M. D., JONES, M. D., WHITE, J. P.,
GALLO, S. M., DELEON, R. L., AND FURLANI, T. R. Effect of
meltdown and spectre patches on the performance of HPC applications.
CoRR abs/1801.04329 (2018).

[45] STECKLINA, J., AND PRESCHER, T. Lazyfp: Leaking FPU register
state using microarchitectural side-channels. CoRR abs/1806.07480
(2018).

[46] TORVALDS, L. Re: Create macros to restrict/unrestrict indirect branch
speculation. https://lkml.org/lkml/2018/1/21/192, 2018.

[47] VAN SCHAIK, S., MILBURN, A., ÖSTERLUND, S., FRIGO, P.,
MAISURADZE, G., RAZAVI, K., BOS, H., AND GIUFFRIDA, C. RIDL:
Rogue in-flight data load. In Proceedings of the 40th IEEE Symposium
on Security and Privacy (San Francisco, CA, May 2019), pp. 88–105.

[48] VAN SCHAIK, S., MINKIN, M., KWONG, A., GENKIN, D., AND

YAROM, Y. CacheOut: Leaking data on intel cpus via cache evictions.
CoRR abs/2006.13353 (2020).

[49] WAGNER, L. Mitigations landing for new class of timing
attack. https://blog.mozilla.org/security/2018/01/03/mitigations-
landing-new-class-timing-attack/, 2018.

[50] WEISSE, O., NEAL, I., LOUGHLIN, K., WENISCH, T. F., AND

KASIKCI, B. NDA: Preventing speculative execution attacks at their
source. In Proceedings of the 52nd IEEE/ACM International Sympo-
sium on Microarchitecture (Columbus, OH, Oct. 2019), pp. 572–586.

[51] WEISSE, O., VAN BULCK, J., MINKIN, M., GENKIN, D., KASIKCI,
B., PIESSENS, F., SILBERSTEIN, M., STRACKX, R., WENISCH, T. F.,
AND YAROM, Y. Foreshadow-NG: Breaking the virtual memory ab-
straction with transient out-of-order execution. Technical report (2018).

[52] XIONG, W., AND SZEFER, J. Survey of transient execution attacks
and their mitigations. ACM Comput. Surv. 54, 3 (May 2021).

[53] YU, J., MANTRI, N., TORRELLAS, J., MORRISON, A., AND

FLETCHER, C. W. Speculative data-oblivious execution: Mobiliz-
ing safe prediction for safe and efficient speculative execution. In
2020 ACM/IEEE 47th Annual International Symposium on Computer
Architecture (ISCA) (2020), pp. 707–720.

[54] YU, J., YAN, M., KHYZHA, A., MORRISON, A., TORRELLAS, J.,
AND FLETCHER, C. W. Speculative taint tracking (STT): A compre-
hensive protection for speculatively accessed data. In Proceedings of
the 52nd IEEE/ACM International Symposium on Microarchitecture
(Columbus, OH, Oct. 2019), pp. 954–968.

265

https://lwn.net/Articles/887638/
https://lwn.net/Articles/887638/
https://www.phoronix.com/scan.php?page=article&item=mds-zombieload-mit
https://www.phoronix.com/scan.php?page=article&item=mds-zombieload-mit
https://www.phoronix.com/scan.php?page=article&item=spectre-meltdown-2
https://www.phoronix.com/scan.php?page=article&item=spectre-meltdown-2
https://www.phoronix.com/scan.php?page=news_item&px=Linux-5.16-Spectre-SECCOMP-To-P
https://www.phoronix.com/scan.php?page=news_item&px=Linux-5.16-Spectre-SECCOMP-To-P
https://www.phoronix.com/scan.php?page=article&item=3-years-specmelt&num=1
https://www.phoronix.com/scan.php?page=article&item=3-years-specmelt&num=1
https://lore.kernel.org/lkml/CALCETrV9rXJOgdBY9Wyardo0NETA1meCEM_C4-e+SYsZAoUU7A@mail.gmail.com
https://lore.kernel.org/lkml/CALCETrV9rXJOgdBY9Wyardo0NETA1meCEM_C4-e+SYsZAoUU7A@mail.gmail.com
https://lore.kernel.org/lkml/CALCETrV9rXJOgdBY9Wyardo0NETA1meCEM_C4-e+SYsZAoUU7A@mail.gmail.com
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3640
https://cve.mitre.org/cgi-bin/cvename.cgi?name=CVE-2018-3640
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://webkit.org/blog/8048/what-spectre-and-meltdown-mean-for-webkit/
https://lkml.org/lkml/2018/1/21/192
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/
https://blog.mozilla.org/security/2018/01/03/mitigations-landing-new-class-timing-attack/

	Abstract
	1 Introduction
	2 Related Work
	3 Background: Attacks and Mitigations
	3.1 Meltdown-Type Attacks
	3.2 Spectre-Type Attacks
	3.3 Microarchitectural Data Sampling (MDS)

	4 End-to-End Benchmarks
	4.1 Methodology
	4.2 LEBench
	4.3 Octane 2
	4.4 Virtual Machine Workloads
	4.5 PARSEC
	4.6 Summary

	5 Performance of Individual Mitigations
	5.1 Meltdown
	5.2 Microarchitectural Data Sampling
	5.3 Spectre V2
	5.4 Spectre V1
	5.5 Speculative Store Bypass
	5.6 L1 Terminal Fault
	5.7 Other attacks

	6 Analysis of Hardware Spectre V2 Mitigations
	6.1 Measuring Speculation
	6.2 Results
	6.3 Takeaways

	7 Discussion
	8 Summary
	9 Conclusions
	10 Acknowledgments
	References

