
Shinjuku: Preemptive Scheduling for
Microsecond-Scale

Tail Latency

Kostis Kaffes, Timothy Chong, Jack Tigar Humphries,
Adam Belay, David Mazières, Christos Kozyrakis

Tail latency matters for datacenter workloads

R

RRRRRR

User-perceived latency
determined by slowest

back-end node

2

R R R R R

Focus on individual leaf node:
minimize tail latency through

better scheduling

Achieving low tail latency at microsecond scale is hard

Problem: High OS overheads
Solution: OS Bypass, polling (no interrupts), run-to-completion (no scheduling)

Distributed Queues + First Come First Serve scheduling
d-FCFS (DPDK, IX, Arrakis)

Receive Side Scaling

3

RR

RR

RR

R

Worker Cores

R

Achieving low tail latency at microsecond scale is hard

44

RSS
RR

RR

RR

R

Idle

Problem: Queue imbalance because d-FCFS is not work conserving

Worker Cores

Achieving low tail latency at microsecond scale is hard

Problem: Queue imbalance because d-FCFS is not work conserving
Solution: Centralized queue - c-FCFS

55

R

Approximation:
d-FCFS + stealing

e.g., ZygOS

Worker Cores

Ideal centralized queue is better in simulation

Better

Better

6

c-FCFS: near optimal
performance

Exponential – μ = 1us
e.g. KVS with homogeneous GET/PUT

d-FCFS: latency starts
growing at load ~0.6

Is FCFS good enough when task duration varies?

Better

Better

7

c-FCFS: latency increases
even for low load

Bimodal – 99.5% 0.5us – 0.5% 500us
e.g. KVS with some RANGE queries

Problem: Short requests get stuck behind long ones

8

R

R

R

R

R

R

All cores are
hogged by

long requests

What if we could use the same preemptive
scheduling as Linux?

Better

Better

9

PS–1ms: latency increases even
for low load (same as c-FCFS)

Bimodal – 99.5% 0.5us – 0.5% 500us
e.g. KVS with some RANGE queries

Solution: What if we could use preemptive
scheduling but at usec scale?

Better

Better

10

Bimodal – 99.5% 0.5us – 0.5% 500us
e.g. KVS with some RANGE queries

PS-5us: near optimal performance
with fast preemption

Insights

Effective scheduling for tail latency requires:
• Centralized queue
• Preemption
• Scheduling policies tailored for each workload

11

Problem: Microsecond scale requires
• Millions of queue accesses per second
• Preemption as often as every 5us
• Light-weight scheduling policies

Solution: Shinjuku

Key Features:
• Dedicated core for scheduling and queue management
• Leverage hardware support for virtualization for fast preemption
• Very fast context switching in user space
• Match scheduling policy to task distribution and target latency

Α single address-space operating system that achieves
microsecond-scale tail latency for all types of workloads
regardless of variability in task duration

12

Outline

• Shinjuku Design

• Preemption Mechanisms

• Scheduling Policies

• Evaluation

13

Shinjuku Design

NIC

Networking Subsystem
(Runtime)

Dispatcher Core
(Runtime)

Worker Cores
(Application)

2

1
3

4

P

5
Reply

RR

R

Interrupt

!
R

Process packets and generate
application-level requests
Pass requests to centralized
dispatcher using shared
memory
Add requests to centralized
queue
Schedule requests to worker
cores using shared memory
Send replies back to clients
through the networking
subsystem
Interrupt long running requests
and schedule other requests
from the queue

1

2

3

4

5

!

14

Outline

• Shinjuku Design

• Preemption Mechanisms

• Scheduling Policies

• Evaluation

15

Minimizing Preemption Overhead
Sender Overhead Receiver Overhead

Dispatcher Worker Core

2084 cycles 2523 cycles

14

Linux Signal

Ring 3
Applications

Non-root Ring 0
Guest OS

Root Ring 0
Kernel

Linux Signal

Minimizing Preemption Overhead
Sender Overhead Receiver Overhead

Dispatcher Worker Core

2084 cycles 2523 cycles
2081 cycles 2662 cycles

14

Linux Signal
Hardware Interrupts

LOCAL
APIC

LOCAL
APIC

VMExit VMExit

Ring 3
Applications

Non-root Ring 0
Guest OS

Root Ring 0
Kernel

Minimizing Preemption Overhead

Dispatcher Worker Core

14

LOCAL
APIC

LOCAL
APIC

VMExit VMExit

Ring 3
Applications

Non-root Ring 0
Guest OS

Root Ring 0
Kernel

Sender Overhead Receiver Overhead
2084 cycles 2523 cycles
2081 cycles 2662 cycles

Linux Signal
Hardware Interrupts

no VMExits

Map APIC to dispatcher’s
address space

Posted Interrupts

298 cycles 1212 cycles
-85% -52%

Minimizing Preemption Overhead

Dispatcher Worker Core

14

LOCAL
APIC

LOCAL
APIC

Ring 3
Applications

Non-root Ring 0
Guest OS

Root Ring 0
Kernel

Sender Overhead Receiver Overhead
2084 cycles 2523 cycles
2081 cycles 2662 cycles

Linux Signal
Hardware Interrupts

no VMExits

Map APIC to dispatcher’s
address space

Posted Interrupts

298 cycles 1212 cycles
-85% -52%

5us Time Slice

Outline

• Shinjuku Design

• Preemption Mechanisms

• Scheduling Policies

• Evaluation

20

Scheduling policy

21

1) Which queue to select from?
2) Where to place preempted

requests?
Single Queue (SQ)

PUT

GET

GET

PUT

Case 1

SCAN

PUT

GET

GET

PUT

SCAN

SCAN

Multiple Queues (MQ)

Case 2

\\

Queue Selection Policy

Policy: Select the queue with the highest ratio: !"#$#%& '#()'"*&)$ +"$)%,-

22

Short requests: Initially low Target Latency è High Ratio

Long requests: Eventually high Waiting Time è High Ratio

PUT

GET

GET

PUT

SCAN

SCAN

Multiple Queues (MQ)

Outline

• Shinjuku Design

• Preemption Mechanisms

• Scheduling Policies

• Evaluation

23

Evaluation

Systems
Shinjuku – Centralized preemptive scheduling

14 Logical Cores for workers
1 Physical Core for both networker and dispatcher (1 Logical Core each)

IX – d-FCFS
ZygOS – d-FCFS + work stealing

16 Logical Cores for workers

Workloads
Synthetic benchmark with different service time distributions
RocksDB - in-memory database

24

Shinjuku under low variability

Better

Better

25

Shinjuku: Close to IX for
homogeneous workloads

Synthetic Workload
Exponential – μ=1us

6.6x

88% lower

26

Shinjuku under high variability

Better

Better

IX and ZygOS: Tail
latency determined by

SCAN requests

RocksDB
99.5% GET - 5us
0.5% SCAN - 250us

27

How important is each optimization?
Single Queue no Preemption

50% GET - 5us 50% SCAN - 1200us

28

How important is each optimization?
Single Queue with Preemption

Preemption offers flatter
latency for some loss of

throughput

50% GET - 5us 50% SCAN - 1200us

29

How important is each optimization?
Multiple Queues with Preemption

Multi-queue policy recovers
the lost throughput

50% GET - 5us 50% SCAN - 1200us

Does Shinjuku scale?

30

One dispatcher can scale
up to 5MRPS and 11 cores

Synthetic Workload
Fixed 1us

31

Does Shinjuku scale?

Synthetic Workload
Fixed 1us

Use multiple
dispatchers and scale

up to 9.6MRPS

More details in the paper

• Fast context switching

• How Shinjuku supports high line rates

• Placement policy of interrupted requests

• The problems of RSS-only scheduling of requests to cores

• More performance analysis

32

Conclusion
Low tail latency for general workloads requires:
• Preemptive Scheduling
• Centralized Queueing
• Flexible Scheduling Policies

Shinjuku meets these demands at microsecond scale:
• Scalable centralized queue using dedicated core
• Preemption every 5us
• Latency-driven scheduling policies

github.com/stanford-mast/shinjuku
33

https://github.com/stanford-mast/shinjuku

Backup

34

Shinjuku Network Scaling

Saturates
modern NICs
even for small
packet sizes

35

36

How important is each optimization?

50% GET - 5us 50% SCAN - 1200us

Time slice matters

37Better

Better

Synthetic Workload
Bimodal

50% 1us – 50% 100us

Slowdown=
!"#$% &$#'()*
+',-.)' !./'

