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Tail latency matters for datacenter workloads
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User-perceived latency 
determined by slowest  

back-end node
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Focus on individual leaf node: 
minimize tail latency through 

better scheduling



Achieving low tail latency at microsecond scale is hard

Problem: High OS overheads
Solution: OS Bypass, polling (no interrupts), run-to-completion (no scheduling)

Distributed Queues + First Come First Serve scheduling
d-FCFS (DPDK, IX, Arrakis)

Receive Side Scaling
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Achieving low tail latency at microsecond scale is hard
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Problem: Queue imbalance because d-FCFS is not work conserving

Worker Cores



Achieving low tail latency at microsecond scale is hard

Problem: Queue imbalance because d-FCFS is not work conserving
Solution: Centralized queue - c-FCFS
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Approximation:
d-FCFS + stealing

e.g., ZygOS

Worker Cores



Ideal centralized queue is better in simulation

Better

Better
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c-FCFS: near optimal 
performance 

Exponential – μ = 1us
e.g. KVS with homogeneous GET/PUT

d-FCFS: latency starts 
growing at load ~0.6 



Is FCFS good enough when task duration varies?

Better

Better
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c-FCFS: latency increases 
even for low load

Bimodal – 99.5% 0.5us – 0.5% 500us
e.g. KVS with some RANGE queries



Problem: Short requests get stuck behind long ones
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All cores are 
hogged by 

long requests



What if we could use the same preemptive 
scheduling as Linux?

Better

Better
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PS–1ms: latency increases even 
for low load (same as c-FCFS)

Bimodal – 99.5% 0.5us – 0.5% 500us
e.g. KVS with some RANGE queries



Solution: What if we could use preemptive 
scheduling but at usec scale?

Better

Better
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Bimodal – 99.5% 0.5us – 0.5% 500us
e.g. KVS with some RANGE queries

PS-5us: near optimal performance 
with fast preemption



Insights

Effective scheduling for tail latency requires:
• Centralized queue
• Preemption
• Scheduling policies tailored for each workload
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Problem: Microsecond scale requires
• Millions of queue accesses per second
• Preemption as often as every 5us
• Light-weight scheduling policies



Solution: Shinjuku

Key Features:
• Dedicated core for scheduling and queue management
• Leverage hardware support for virtualization for fast preemption
• Very fast context switching in user space
• Match scheduling policy to task distribution and target latency

Α single address-space operating system that achieves 
microsecond-scale tail latency for all types of workloads 
regardless of variability in task duration
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Outline

• Shinjuku Design

• Preemption Mechanisms

• Scheduling Policies

• Evaluation
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Shinjuku Design

NIC

Networking Subsystem
(Runtime)

Dispatcher Core
(Runtime)

Worker Cores
(Application)
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Process packets and generate 
application-level requests
Pass requests to centralized 
dispatcher using shared 
memory
Add requests to centralized 
queue
Schedule requests to worker 
cores using shared memory
Send replies back to clients 
through the networking 
subsystem
Interrupt long running requests 
and schedule other requests
from the queue
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Outline

• Shinjuku Design

• Preemption Mechanisms

• Scheduling Policies

• Evaluation
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Minimizing Preemption Overhead
Sender Overhead Receiver Overhead

Dispatcher Worker Core

2084 cycles 2523 cycles
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Linux Signal

Ring 3
Applications

Non-root Ring 0
Guest OS

Root Ring 0
Kernel

Linux Signal



Minimizing Preemption Overhead
Sender Overhead Receiver Overhead

Dispatcher Worker Core

2084 cycles 2523 cycles
2081 cycles 2662 cycles
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Minimizing Preemption Overhead

Dispatcher Worker Core
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LOCAL 
APIC
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Linux Signal
Hardware Interrupts

no VMExits

Map APIC to dispatcher’s 
address space

Posted Interrupts

298 cycles 1212 cycles
-85% -52%



Minimizing Preemption Overhead

Dispatcher Worker Core
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LOCAL 
APIC

LOCAL 
APIC

Ring 3
Applications

Non-root Ring 0
Guest OS

Root Ring 0
Kernel

Sender Overhead Receiver Overhead
2084 cycles 2523 cycles
2081 cycles 2662 cycles

Linux Signal
Hardware Interrupts

no VMExits

Map APIC to dispatcher’s 
address space

Posted Interrupts

298 cycles 1212 cycles
-85% -52%

5us Time Slice
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Scheduling policy
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1) Which queue to select from?
2) Where to place preempted 

requests?
Single Queue (SQ)

PUT

GET

GET

PUT

Case 1

SCAN

PUT

GET

GET

PUT

SCAN

SCAN

Multiple Queues (MQ)

Case 2
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Queue Selection Policy

Policy: Select the queue with the highest ratio: !"#$#%& '#()'"*&)$ +"$)%,-
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Short requests: Initially low Target Latency è High Ratio

Long requests: Eventually high Waiting Time è High Ratio

PUT

GET

GET

PUT

SCAN

SCAN

Multiple Queues (MQ)
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Evaluation

Systems
Shinjuku – Centralized preemptive scheduling

14 Logical Cores for workers
1 Physical Core for both networker and dispatcher (1 Logical Core each)

IX – d-FCFS
ZygOS – d-FCFS + work stealing

16 Logical Cores for workers

Workloads
Synthetic benchmark with different service time distributions
RocksDB - in-memory database
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Shinjuku under low variability

Better

Better
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Shinjuku: Close to IX for 
homogeneous workloads

Synthetic Workload
Exponential – μ=1us



6.6x

88% lower
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Shinjuku under high variability

Better

Better

IX and ZygOS: Tail 
latency determined by 

SCAN requests

RocksDB
99.5% GET - 5us
0.5% SCAN - 250us
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How important is each optimization?
Single Queue no Preemption

50% GET - 5us 50% SCAN - 1200us
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How important is each optimization?
Single Queue with Preemption

Preemption offers flatter 
latency for some loss of 

throughput

50% GET - 5us 50% SCAN - 1200us
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How important is each optimization?
Multiple Queues with Preemption

Multi-queue policy recovers 
the lost throughput

50% GET - 5us 50% SCAN - 1200us



Does Shinjuku scale?
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One dispatcher can scale 
up to 5MRPS and 11 cores

Synthetic Workload
Fixed 1us
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Does Shinjuku scale?

Synthetic Workload
Fixed 1us

Use multiple 
dispatchers and scale 

up to 9.6MRPS



More details in the paper

• Fast context switching

• How Shinjuku supports high line rates

• Placement policy of interrupted requests

• The problems of RSS-only scheduling of requests to cores

• More performance analysis
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Conclusion
Low tail latency for general workloads requires:
• Preemptive Scheduling
• Centralized Queueing
• Flexible Scheduling Policies

Shinjuku meets these demands at microsecond scale:
• Scalable centralized queue using dedicated core
• Preemption every 5us
• Latency-driven scheduling policies

github.com/stanford-mast/shinjuku
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https://github.com/stanford-mast/shinjuku


Backup
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Shinjuku Network Scaling

Saturates 
modern NICs 
even for small 
packet sizes 
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How important is each optimization?

50% GET - 5us 50% SCAN - 1200us



Time slice matters
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Synthetic Workload
Bimodal

50% 1us – 50% 100us

Slowdown=
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