
This paper is included in the Proceedings of the
16th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’19).
February 26–28, 2019 • Boston, MA, USA

ISBN 978-1-931971-49-2

Open access to the Proceedings of the
16th USENIX Symposium on Networked Systems

Design and Implementation (NSDI ’19)
is sponsored by

Shinjuku: Preemptive Scheduling
for µsecond-scale Tail Latency

Kostis Kaffes, Timothy Chong, and Jack Tigar Humphries, Stanford University;
Adam Belay, Massachusetts Institute of Technology;

David Mazières and Christos Kozyrakis, Stanford University

https://www.usenix.org/conference/nsdi19/presentation/kaffes

Shinjuku: Preemptive Scheduling for µsecond-scale Tail Latency

Kostis Kaffes1 Timothy Chong1 Jack Tigar Humphries1

Adam Belay2 David Mazières1 Christos Kozyrakis1

1 Stanford University 2 Massachusetts Institute of Technology

Abstract

The recently proposed dataplanes for microsecond scale
applications, such as IX and ZygOS, use non-preemptive
policies to schedule requests to cores. For the many real-
world scenarios where request service times follow dis-
tributions with high dispersion or a heavy tail, they allow
short requests to be blocked behind long requests, which
leads to poor tail latency.

Shinjuku is a single-address space operating system
that uses hardware support for virtualization to make
preemption practical at the microsecond scale. This al-
lows Shinjuku to implement centralized scheduling poli-
cies that preempt requests as often as every 5µsec and
work well for both light and heavy tailed request service
time distributions. We demonstrate that Shinjuku pro-
vides significant tail latency and throughput improve-
ments over IX and ZygOS for a wide range of workload
scenarios. For the case of a RocksDB server processing
both point and range queries, Shinjuku achieves up to
6.6× higher throughput and 88% lower tail latency.

1 Introduction
Popular cloud applications such as web search, social
networks, and machine translation fan out requests to
hundreds of communicating services running on thou-
sands of machines. End-to-end response times are then
dominated by the slowest machine to respond [23]. Re-
acting to user actions within tens of milliseconds re-
quires that each participating service process requests
with tail latency in the range of ten to a few hundred
microseconds [14]. Unfortunately, thread management
in modern operating systems such as Linux is not de-
signed for microsecond-scale tasks and frequently pro-
duces long, unpredictable scheduling delays resulting in
millisecond-scale tail latencies [36, 37].

To compensate, researchers have developed network
stacks, dataplanes, and full applications that bypass
the operating system [44, 31, 39, 32, 16, 45, 22].
Most of these systems operate in a similar way: the
NIC uses receive-side scaling (RSS) [21] to distribute

incoming requests across multiple queues in a flow-
consistent manner; a polling thread serves requests in
each queue in a first-come-first-served manner (FCFS)
without scheduling interruptions; optimizations such as
zero copy, run-to-completion, adaptive batching, and
cache-friendly and thread-private data structures reduce
overheads. The resulting request scheduling is known as
distributed queuing and FCFS scheduling, or d-FCFS.

d-FCFS is effective when request service times ex-
hibit low dispersion [57], as is the case for get/put
requests to simple in-memory key-value stores (KVS)
such as Memcached [43]. d-FCFS fares poorly un-
der high dispersion or heavy-tailed request distributions
(e.g., bimodal, log-normal, Zipf, or Pareto distribu-
tions), as short requests get stuck behind older long ones
assigned to the same queue. d-FCFS is also not work-
conserving, an effect exacerbated by implementations
based on RSS’s flow-consistent hashing, which approx-
imates true d-FCFS only with high numbers of client
connections spreading requests out evenly over queues.

ZygOS [46] improved on d-FCFS by implementing
low-overhead task stealing: threads that complete short
requests steal work from threads tied up by longer ones.
It approximates centralized FCFS scheduling (c-FCFS),
in which all threads serve a single queue. Work steal-
ing is not free. It requires scanning queues cached on
non-local cores and forwarding system calls back to a
request’s home core. However, if service times exhibit
low dispersion and there are enough client connections
for RSS to spread requests evenly across queues, steal-
ing happens infrequently.

Unfortunately, c-FCFS is also inefficient for work-
loads with request times that follow heavy-tailed distri-
butions or even light-tailed distributions with high dis-
persion. These workloads include search engines that
score and rank a number of items depending on the pop-
ularity of search terms [13]; microservices and function-
as-a-service (FaaS) frameworks [17]; and in-memory
stores or databases, such as RocksDB [26], Redis [35],
and Silo [54], that support both simple get/put requests

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 345

and complex range or SQL queries, and use slower non-
volatile memory in addition to fast DRAM. Theory tells
us that such workloads do best in terms of tail latency
under processor sharing (PS) [57], where all requests
receive a fine-grain, fair fraction of the available pro-
cessing capacity.

To approximate PS, we need preemption, as built into
any modern kernel scheduler including Linux. However,
any service that uses one thread per request or connec-
tion and allows Linux to manage threads will experi-
ence millisecond-scale tail latencies, because the ker-
nel employs preemption at millisecond granularities and
its policies are not optimized for microsecond-scale tail
latency [36, 37]. User-level libraries for cooperative
threading can avoid the overheads of kernel schedul-
ing [56]. However, it is difficult to yield often enough
during requests with longer processing times and with-
out many blocking I/O calls, which are precisely the re-
quests impacting tail latency.

This paper presents Shinjuku, a single-address space
operating system that implements preemptive schedul-
ing at the microsecond-scale and improves tail latency
and throughput for both light- and heavy-tailed service
time distributions. Shinjuku deemphasizes RSS in favor
of true centralized scheduling by one or more dedicated
dispatcher threads with centralized knowledge of load
and service time distribution. It leverages hardware sup-
port for virtualization—specifically posted interrupts—
to achieve preemption overheads of 298 cycles in the
dispatcher core and 1,212 cycles in worker cores. The
single address space architecture allows us to optimize
context switches down to 110 cycles.

Fast preemption enables scheduling policies that
switch between requests as often as every 5 µsec when
needed. We developed two policies. The first assumes
no prior knowledge of request service times and uses
preemption to select at fine granularity between FCFS or
PS based on observed service times. The second policy
assumes we can segregate requests with different ser-
vice level objectives (SLO) in order to ensure good tail
latency for both short and long requests. Both policies
are work conserving and work well across multiple dis-
tributions of service times (light-tailed, heavy-tailed, bi-
modal, or multimodal). The two policies make Shinjuku
the first system to support microsecond-scale tail latency
for workloads beyond those with fixed or low-dispersion
service time distributions.

We compare Shinjuku with IX [16] and ZygOS [46],
two state-of-the-art dataplane operating systems. Us-
ing synthetic workloads, we show that Shinjuku matches
IX’s and ZygOS’ performance for light-tailed workloads

while it supports up to 5x larger load for heavy-tailed
and multi-modal distributions. Using RocksDB, a pop-
ular key-value store that also supports range queries,
we show that Shinjuku improves upon ZygOS by up to
6.6× in terms of throughput at a given 99th percentile
latency. We show that Shinjuku scales well with the
number of cores available, can saturate high speed net-
work links, and is efficient even with small connection
counts.

The rest of the paper is organized as follows.
§2 motivates the need for preemptive scheduling at
microsecond-scale. §3 discusses the design and imple-
mentation of Shinjuku. §4 presents a thorough quantita-
tive evaluation while §5 discusses related work.

Shinjuku is open-source software. The
code is available at https://github.com/
stanford-mast/shinjuku.

2 Motivation
Background: We aim to improve the SLO of latency-
critical services on a single server. For cloud services
and microservices with high fan-out, Shinjuku must
achieve low tail latency at the microsecond scale [14].
Low average or median latency is not sufficient [23].
While tail latency can be improved through overprovi-
sioning, doing so is not economical for services with
millions of users. To be cost-effective, Shinjuku must
maintain low tail latency in the face of high request
throughput. Finally, it must be practical for a wide
range of workloads and support intuitive APIs that sim-
plify development and maintenance of large code bases.

The key to achieving low tail latency and high
throughput is effective request scheduling, which re-
quires both good policies and low-overhead mechanisms
that operate at the microsecond scale. Good policies are
easy to achieve in isolation. Linux already supplies ap-
proximations of the optimal policies for workloads we
target. Unfortunately, the Linux kernel scheduler oper-
ates at the millisecond scale because of preemption and
context switch overheads and the complexity of simul-
taneously accommodating batch, background, and inter-
active tasks at different time scales [36, 37].

Recent proposals for user-level networking stacks,
dataplanes, RPC protocols, and applications [22, 44,
16, 45, 31, 39, 32] sidestep the bloated kernel network-
ing and thread management stacks in order to optimize
tail latency and throughput. Most of these systems use
RSS to approximate a d-FCFS scheduling policy [21],
the IX dataplane being a canonical example [16]. Zy-
gOS improves on IX by using work stealing to ap-
proximate c-FCFS [46]. Linux applications built with
libevent [47] or libuv [5] also implement c-FCFS,

346 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://github.com/stanford-mast/shinjuku
https://github.com/stanford-mast/shinjuku

d-FCFS c-FCFS c-PRE-SQ PS

0 0.2 0.4 0.6 0.8 1

Load (%)

0

10

20

30

40

50

9
9
%

 T
a
il

L
a
te

n
c
y
 (

u
s
)

(a) Exp(1)

0 0.2 0.4 0.6 0.8 1

Load (%)

0

100

200

300

400

(b) log-normal(1,10)

0 0.2 0.4 0.6 0.8 1

Load (%)

0

200

400

600

800

1000

(c)
Bimodal(99.5−0.5,0.5−500)

Figure 1: Simulation results for different workloads and scheduling policies for a 16-core system.

d-FCFS c-FCFS c-PRE-MQ PS

0 0.5 1

Load (%)

0

20

40

60

80

100

9
9
%

 T
a
il

L
a
te

n
c
y
 (

u
s
)

(a) 1µs Requests

0 0.5 1

Load (%)

0

500

1000

9
9
%

 T
a
il

L
a
te

n
c
y
 (

u
s
)

(b) 100µs Requests

0 0.5 1

Load (%)

0

100

200

300

400

500

9
9
%

 S
lo

w
d
o
w

n

(c) Total 99% Slowdown

Figure 2: Simulation results for Bimodal(50−1,50−100) for a 16-core system.

but at much higher overheads due to the use of interrupts
for request distribution instead of RSS and polling.

Policy comparison: In order to quantify the dif-
ferences between different scheduling policies, we de-
veloped a discrete event simulator. The simulator al-
lowed us to configure parameters such as scheduling
policy, number of host cores, system load, service and
inter-arrival time distributions as well as various system-
related overheads. Figure 1 compares idealized ver-
sions of scheduling policies—i.e., no stealing or pre-
emption overhead—using the simulator. Plot (a) shows
a light-tailed exponential distribution of service times
with mean µ = 1 µsec, representative of workloads such
as the get/set requests of in-memory key-value stores.
d-FCFS is arguably tolerable under such simple work-
loads, but suffers at moderate and high load as requests
are not perfectly distributed across workers. c-FCFS
is optimal under such workloads, while PS is slightly
worse because it preempts even short requests. The PS
time slice used for all simulations is 0.1 µsec.

d-FCFS is a poor option for heavy-tailed request dis-
tributions [42], as found in search engines [38] or in-
duced by activities such as garbage collection or com-
paction [23, 6, 26]. Plot (b) shows performance un-
der a heavy-tailed log-normal distribution with mean
µ = 1 µsec and standard deviation σ = 10 µsec. Any
long request blocks every short request assigned to the
same queue in d-FCFS. c-FCFS performs significantly
better as a worker can service any request; short re-
quests are only delayed when most workers simultane-
ously process older long requests, which is uncommon
for the log-normal distribution.

c-FCFS performs significantly worse under a light-
tailed bimodal distribution, commonly found in object
stores and databases that mix simple get/put requests
with complex range or relational queries [35, 26, 54].
Plot (c) shows such a distribution in which 99.5% of re-
quests take 0.5µsec and 0.5% take 500µsec. Compared
to a heavy-tailed case, the bimodal distribution’s long
requests are not as long but far more frequent. PS han-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 347

dles both cases in Plots (b) and (c) well by preempting
long requests to interleave execution of short ones.

Figure 2 provides further insights by separating the
performance of short and long requests in a bimodal
workload with service times evenly split between 1 µsec
and 100 µsec. This approximates a KVS in which half
of the requests are get/put requests and the other half are
range queries. The tail latency for the two request types
is drawn separately in Plots (a) and (b), and Plot (c)
shows the 99th percentile of the request slowdown for
all requests, which is the ratio of a request’s overall la-
tency to its service time. This ratio is a useful metric for
measuring how well we achieve our goal of reducing
queuing time for all request types: if this ratio is small,
it means that queuing time is small for all types and no
requests are affected by the requests of different types.

Plot 2a shows that both d-FCFS and c-FCFS heavily
penalize 1-µsec requests. Plot 2b shows that c-FCFS is
marginally better than PS for 100 µsec requests, as it
effectively prioritizes older, long requests that would be
preempted by PS. Plot 2c shows that, in relative terms,
the penalty c-FCFS inflicts on short requests dwarfs any
benefit to long requests.

Shinjuku approach: Shinjuku implements the c-
PRE policies (see §3.4) that achieve the best of both
worlds between PS and c-FCFS as shown in Figures 1
and 2. The reason other recent systems cannot imple-
ment similar policies is that these policies require pre-
emption at arbitrary execution points. Preemption typi-
cally involves interrupts and kernel threads whose over-
heads are incompatible with microsecond-scale laten-
cies. Therefore, Shinjuku aims to achieve the follow-
ing goals: 1) Implement low-overhead preemption and
context switching mechanisms for user-level threads. 2)
Use these mechanisms to build scheduling policies that
work well across all possible distributions of service
times for microsecond-scale workloads.

3 Shinjuku
Shinjuku1 is a single-address space operating system for
low-latency applications. Shinjuku is a significant de-
parture from the common pattern in IX [16] and Zy-
gOS [46], which rely heavily on RSS to distribute in-
coming requests to workers that process them without
interruption. Instead, Shinjuku uses a centralized queu-
ing and scheduling architecture and relies on low over-
head and frequent preemption in order to ensure low tail
latency for a wide variety of service time distributions.

1Shinjuku (新宿駅）is a major train station in Tokyo that serves
millions traveling on 12 lines of various types and speeds.

Figure 3: Shinjuku system design.

3.1 Design Overview
Figure 3 summarizes the key components in Shinjuku
and the typical request flow. Incoming requests are first
processed by the networking subsystem that handles
all network protocol processing and identifies request
boundaries ¶. The networking subsystem can be im-
plemented using one or more dedicated cores or hyper-
threads [22], a smartNIC [33, 53], or a combination of
the two. By separating network processing from request
scheduling, Shinjuku can be combined with a range of
networking protocols that optimize for different condi-
tions (UDP, TCP, ROCE [52], TIMELY [41], etc.) and
various optimized network stacks [31, 28, 22]. The net-
working subsystem passes requests to a centralized dis-
patcher thread · that will queue and schedule them to
worker threads. The dispatcher generates a context for
each incoming request in order to support preemption
and rescheduling. In its simplest form, the dispatcher
maintains a single queue for all pending requests. The
dispatcher sends requests to worker threads ¸, each us-
ing a dedicated hardware core or hyperthread. Most re-
quests will complete their execution without interrup-
tion. Network processing for any replies can take place
either at the networking subsystem or the worker thread
itself to optimize for latency. At a minimum, the worker
thread notifies the networking subsystem to free any
buffer space allocated for the incoming request ¹.

The dispatcher uses timestamps to identify long run-
ning requests that should be preempted based on the
scheduling policy. Assuming there are queued requests,
we preempt running requests after 5µsec to 15µsec for
the workloads we studied (see §4), which is extremely
frequent compared to the time slice in the Linux kernel.
For example, the CFS scheduler has a target preemption
latency of 6ms and a minimum one of 0.75ms. The dis-
patcher sends an interrupt to the worker thread º, which
performs a context switch and receives a different re-
quest to run from the dispatcher. The long request is
re-enqueued » in the dispatcher and processed later us-

348 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

Preemption Sender Receiver Total
Mechanism Cost Cost Latency

Linux Signal 2084 2523 4950
Vanilla IPI 2081 2662 4219
IPI Sender-only Exit 2081 1212 2768
IPI Receiver-only Exit 298 2662 3433
IPI No Exits 298 1212 1993

Table 1: Average preemption overhead in cycles.
Sender/receiver cost refers to cycles consumed in the
sending/receiving core, including the receiver overhead
of invoking an empty interrupt handler. Total cost in-
cludes interrupt propagation through the system bus.
Hence, it is not equal to the sum of sender and receiver
overhead. For “IPI Sender-only Exit” and “Vanilla IPI,”
the receiver starts interrupt processing before the sender
returns from its VM exit.

ing steps ·-» as many times as needed.
Since Shinjuku is a single-address space operating

system, communication between its components occurs
over shared memory. We use dedicated pairs of cache
lines for each pair of communicating threads (see §3.5).

Similar to IX and ZygOS, Shinjuku leverages the
Dune system for process virtualization [15]. With Dune,
Linux and the Dune kernel module run in VMX root
mode ring 0, where a hypervisor would run in a virtu-
alized system. Shinjuku runs in VMX non-root mode
ring 0, where a guest OS would run. This allows it to
use very low overhead interrupts while separating the
control from the data plane. The application context that
uses Shinjuku can run in VMX non-root mode ring 0 or
ring 3. For the results in §4, we run applications in VMX
non-root mode ring 0 to avoid the address space cross-
ings between Shinjuku and the application code. There
is a separate instance of Shinjuku for each low-latency
application running on the server.

3.2 Fast Preemption
To use preemptive scheduling at microsecond latencies,
Shinjuku requires fast preemption. A naive approach
would be for the dispatcher to notify workers using
Linux signals. As we show in Table 1, however, sig-
nals incur high overheads for both the sender and the
receiver (roughly 2.5 µsec on a 2GHz machine). They
require user- to kernel-space transitions plus some ker-
nel processing.

Preemption through interrupts. Direct use of inter-
processor interrupts (IPIs) is potentially faster than
signals. x86 processors implement IPIs using the
Advanced Programmable Interrupt Controller (APIC).

Each core has a local APIC and an I/O APIC is at-
tached to the system bus. To send an IPI, the sending
core writes registers in its local APIC which propagates
the interrupt via the I/O APIC to the destination core’s
APIC, which in turn vectors execution to an interrupt
handler.

We extended Dune to support IPIs by virtualizing the
local APIC registers. When a non-root thread on core
A writes its virtual APIC to send interrupt number V to
core B, this causes a VM exit to Dune running in root
mode. Dune writes V to core B’s posted interrupt de-
scriptor, and then uses the real APIC to send interrupt
242 to core B. That causes core B to perform a VM exit
to an interrupt handler in Dune, which injects interrupt
number V into non-root mode on resuming the applica-
tion.

As Table 1 shows, this vanilla implementation of pre-
emption using IPIs is slightly faster than Linux signals
but still suffers from significant overheads due to the
cost of VM exits in both the sender and the receiver.

Optimized interrupt delivery. We first focus on re-
moving the VM exit on the receiving core B (the Shin-
juku worker) using posted interrupts, an x86 feature
for receiving interrupts without a VM exit. To enable
posted interrupts, Dune on B configures its hardware-
defined VM control structure (VMCS) to recognize in-
terrupt 242 as the special posted interrupt notification
vector. B also registers its posted interrupt descriptor
with the VMCS. Core A still performs a VM exit upon
writing the virtual APIC. Dune code on A writes V into
B’s posted interrupt descriptor and sends interrupt 242 to
B. However, B then directly injects interrupt V without
a VM exit. Table 1 shows that eliminating the receiver-
side VM exit reduces receiver overhead by 54% (from
2662 to 1212 cycles). This allows frequent preemption
of worker threads without significant reduction in use-
ful worker throughput. This receiver overhead consists
of modifications to hardware structures, and it cannot be
significantly improved without hardware changes, such
as support for lightweight user-level interrupts [51].

Optimized interrupt sending. Finally, we remove
the VM exit on the sending core (dispatcher thread) by
trusting the Shinjuku dispatcher with direct access to the
real (non-virtual) APIC. Using the extended page ta-
ble (EPT), we map both the posted interrupt descriptors
of other cores and the local APIC’s registers into the
guest physical address space of the Shinjuku dispatcher.
Hence, the dispatcher can directly send an IPI without
incurring a VM exit. Table 1 shows that eliminating the
sender-side VM exit reduces sender overheads down to
298 cycles (149ns in a 2GHz system). This improves

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 349

Mechanism Linux process Dune process

swapcontext 985 2290
No signal mask 140 140
No FP-restore 36 36

No FP-save 109 109

Table 2: Average overhead in clock cycles of different
context-switch mechanisms for both an ordinary Linux
process and the Dune process used by Shinjuku.

dispatcher scalability and allows it to serve more re-
quests per second and/or more worker threads (cores).

Table 1 presents the result of combining the sender-
side and receiver-side optimization for the interrupt de-
livery used to support preemption in Shinjuku. The
low sender-side overhead (298 cycles) makes it prac-
tical to build a centralized, preemptive dispatcher that
handles millions of scheduling actions per second. The
low receiver-side overhead (1212 cycles) makes it prac-
tical to preempt requests as often as every 5µsec in order
to schedule longer requests without wasting more than
10% of the workers’ throughput.

3.3 Low-overhead Context Switch
When a request is scheduled to an idling core or upon
preemption, we context switch between the main con-
text in each worker and the request handling con-
text. The direct approach would be to use the
swapcontext function in the Linux ucontext li-
brary. According to Table 2, the overhead is signif-
icant in an ordinary Linux process and doubles when
used in a Dune process. swapcontext requires a
system call to set the signal masks during the switch,
which requires a VM exit in Dune. The rest of the work
in swapcontext—i.e., saving/restoring register state
and the stack pointer—does not require system calls.

Table 2 evaluates context switch optimizations. First,
we skip setting the signal mask which eliminates the
system call and brings Dune to parity with ordinary
Linux. This introduces the limitation that all tasks be-
longing to the same application need to share the same
signal mask. Next, we exploit that the main worker
context does not use floating (FP) instructions. When
switching from a request context to the worker context,
we must save FP registers as they may have been used in
request processing, but we do not need to restore them
for the worker context. When switching from the worker
context to a request context, we skip saving FP registers
and just restore them for the request context. Shinjuku
uses the last two options in Table 2 for context switching
in worker cores. The overall cost ranges from 36 to 109

cycles (18 to 55ns for a 2GHz system).

3.4 Preemptive Scheduling
The centralized dispatcher and fast preemption and con-
text switch mechanisms allow Shinjuku to implement
preemptive scheduling policies. We developed two poli-
cies that differ on whether we can differentiate a pri-
ori between requests types. The policies rely on fre-
quent preemption to provide near-optimal tail latency
for any workload, approximating c-FCFS for low dis-
persion workloads and PS for all other cases.

Single queue (SQ) policy: This policy assumes that
we do not differentiate a priori between request types
and that there is a single service-level agreement (SLO)
for tail latency. This is the case, for example, in a search
service where we cannot know a priori which requests
will have longer service times. All incoming requests
are placed in a single FCFS queue. When a worker is
idle, the dispatcher assigns to it the request at the head
of the queue. If requests are processed quickly, this pol-
icy operates as centralized FCFS. The dispatcher uses
timestamps to identify any request running for more
than a predefined quantum (5 to 15µsec in our exper-
iments) and, assuming the queue is not empty, preempts
it. The request is placed back in the queue and the
worker is assigned the request at the current head of the
queue. The c-PRE-SQ policy evaluated through simula-
tion in Figure 1 is this single queue policy.

Multi queue (MQ) policy: This policy assumes that
the network subsystem can identify different request
types. For example, it can parse the request header
for KVS like Redis and RocksDB and separate simple
get/put requests from complex range query requests [33]
or use different ports for different request types. Linux
already supports peeking into packets with eBPF [2].
Each request type can have a different tail latency SLO.
The dispatcher maintains one queue per request type. If
only one queue has pending requests, this policy oper-
ates just like the single queue policy described above. If
more than one queue is non empty, the dispatcher must
select a queue to serve when a worker becomes idle or
a request is preempted. Once the queue is selected, the
dispatcher always takes the request at the head.

The queue selection algorithm is inspired by
BVT [24], a process scheduling algorithm for latency
sensitive tasks. In BVT, each process has a warp factor
that quantifies its priority compared to other processes.
For Shinjuku, we need a similar warp factor that favors
requests with smaller target latency in the short term,
but also considers aging of requests with longer latency
targets. Since Shinjuku schedules requests and not long
running processes with priorities like BVT, the selec-

350 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

tion algorithm shown below uses as input the target SLO
latency for each queue (e.g., target 99th percentile la-
tency). For the request at the head of each queue, the
algorithm uses timestamps to calculate the ratio of the
time it has already spent in the system (queuing time) to
the SLO target latency for this request type. The queue
with the highest such ratio is selected. The algorithm
initially favors short requests that can only tolerate short
queuing times, but eventually selects long requests that
may have been waiting for a while. The per-queue SLO
is a user-set parameter. In our experiments, we set it by
running each request type individually using the single
queue policy and use the observed 99% latency. This
captures the requirement that the performance of a re-
quest type should not be affected by the existence of re-
quests with different service time distributions.

1 Queue Selection Policy

1: procedure QUEUESELECTION(QUEUES):
2: max← 0
3: max queue←−1
4: time← timestamp()
5: for queue in queues do
6: cur ratio← time−queue[0].timestamp

queue.SLO
7: if cur ratio> max then
8: max← cur ratio
9: max queue← queue

10: return max queue

A preempted request can be placed either at the tail
of its queue to approximate PS or at the head of the
queue to approximate c-FCFS. This choice can be set
by the application or based on online measurements of
service time statistics. The rule of thumb we use is
that for multi-modal or heavy-tailed workloads, the re-
quests should be placed at the tail of the queue, while
for light-tailed ones at the head. Frequent preemption
is needed even with light-tailed distributions in order
to allow Shinjuku to serve the queues for other request
types. The c-PRE-MQ policy evaluated through simu-
lation in Figure 2 is this multi-queue policy, where both
request types are placed at the head of their correspond-
ing queues when preempted.

3.5 Implementation
The current Shinjuku implementation is based on Dune
and requires the VT-x virtualization features in x86-64
systems [20]. Dune can be ported to other architectures
with similar virtualization support. Our modifications to
Dune involve 1365 SLOC. The Shinjuku dispatcher and
worker code are 2535 SLOC. The network subsystem
we used in §4 is based on IX [16]. All the aforemen-
tioned codebases are in C.

API: To use Shinjuku, applications need to reg-
ister three callback functions: the init() func-
tion that initializes global application state; the
init per core(int core num) function that ini-
tializes application state for each worker thread
(e.g. local variables or configuration options); the
reply * handle request(request *) func-
tion that handles a single application-level request and
returns a pointer to the reply data.

Context management: We use a modified version of
the Linux ucontext library for context management.
The context structure consists of a machine-specific rep-
resentation of the saved state, the signal mask, a pointer
to the context stack, and a pointer to the context that will
be resumed when this context finishes execution. The
dispatcher allocates context objects and stack space for
each request from a memory pool. They are freed by
the dispatcher when the request context completes exe-
cution and is returned by a worker thread.

Inter-thread communication: In adition to preemp-
tion, we use a low-overhead, shared memory commu-
nication scheme similar to that used in [50]. Each pair
of threads, running on dedicated cores or hyperthreads,
communicates over shared pairs of cache lines, one for
each direction of communication. The sending thread
fills the cache line with the data it wants to send, e.g.
request or context pointers, as shown in Figure 3. Then,
it sets the value of the byte the receiver polls to notify it
that the cache line is ready for reading. This approach
requires two cache line state transitions, one from shared
to exclusive state which takes place when the sender
writes the data and one from exclusive to shared state
when the receiver reads the data. The average roundtrip
latency for a message sent and received over a cache line
is 211 cycles. The dispatcher’s minimum work for send-
ing a message is approximately 70 cycles, i.e. 35ns in
a 2GHz machine. This sets a theoretical upper bound
of 28 MRPS for the number of requests the dispatcher
can handle, assuming all it has to do is to place pointers
to the requests in shared memory locations and notify
idling workers.

3.6 Discussion
Hardware constraints: §4 shows that a single dis-
patcher thread can process at least 5M requests per sec-
ond and comfortably saturate a full socket with 12 cores
and 24 hyperthreads. To scale a single application to
higher core and/or socket counts, we must improve the
dispatcher throughput. The approach we use is to have
each dispatcher thread handle a subset of the worker
threads and steer requests to different dispatchers using
the NIC RSS feature. A relatively simple hardware fea-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 351

0 50 100

Queues

0

5

10

C
o

n
n

e
c
ti
o

n
s

10
4

Figure 4: Number of concurrent connections needed for
load imbalance among queues to be less than 10% with
probability greater than 90%.

ture that would vastly improve the dispatcher scalability
would be a low-overhead message passing mechanism
among different cores [34, 51]. Ideally, such a mecha-
nism would offer two variations, a preemptive one that
would be used for scheduling and a non-preemptive one
where messages are added to per core queues and would
be used for work assignment.

Connection counts: IX and ZygOS use RSS to dis-
tribute requests to workers. Using a Monte-Carlo sim-
ulation, we calculate the connection count needed for
RSS to keep imbalance below 10% with high probability
as we increase the number of cores. As shown in Fig-
ure 4, they need 16,000 connections (clients or flows)
to avoid imbalance on a server with 24 hyperthreads.
High connection counts are common for public facing
services (e.g., public load balancer or HTTP server), but
not for internal ones. The DCTCP project [9] found
at most a few hundred connections to back-end servers
over each 1 msec window. In contrast, Shinjuku uses
RSS to distribute requests to dispatchers. Since each
dispatcher can manage tens of cores, Shinjuku is not
subject to the requirement of high connection (clients or
flows) counts discussed in §2. For example, 300 connec-
tions are sufficient to load balance across 2 dispatchers.
When a single dispatcher suffices, Shinjuku will operate
efficiently even with a single connection.

Alternative scheduling policies: Shinjuku can sup-
port more scheduling policies in addition to the two
we presented. In future work, we will explore inte-
grating Shinjuku with datacenter-wide profiling tools
[49] and online experimentation tools [55] in order
to dynamically infer the service time distributions and
adjust the policy accordingly. We will also explore
microsecond-scale scheduling policies that are locality-
and heterogeneity-aware [30, 27]. For example, con-
sider an application which creates a large memory foot-
print before responding to a client request. In such

cases, we will want to avoid preempting and context
switching as multiple cache lines will have to move to a
different core, which can be very expensive.

Control plane: Online services experience load vari-
ations, such as a diurnal load patterns and spikes. Hence,
it makes sense to adjust over time the number of work-
ers a Shinjuku process uses. Shenango [7] solves this
problem by adjusting core allocation between applica-
tions in microsecond timescales. We plan to explore the
possibility of integrating the two systems.

Security model: The Dune kernel module [15] uses
hardware support for virtualization to isolate a Shinjuku
process from the Linux kernel and any other process,
ordinary Linux or Shinjuku based. Linux can also re-
move cores and network queues from a Shinjuku pro-
cess at any time. Within a Shinjuku process, the ap-
plication code must trust the Shinjuku runtime and, if
the application contexts execute in VMX non-root ring
0, the Shinjuku runtime must trust the application code.
For example, the fact that APIC registers are mapped in
the process address space means that one process could
launch a denial-of-service attack on another process by
issuing a large number of interrupts to a specific core.

We measured the cost of a ring 3→ ring 0→ ring 3
transition to be only 84 cycles. Future versions of Shin-
juku will run application code in ring 3 while the Shin-
juku runtime will be running in VMX non-root ring 0
eliminating this attack vector with very small overhead.
Moreover, with this approach, bugs in application code
will only cause contexts to crash, not affecting the run-
time system.

Synchronization in user code: Online services are
designed to run well on multiple cores. They synchro-
nize across requests, but synchronization is short and
infrequent to achieve scalability. Scalable applications
will perform with Shinjuku regardless of whether we
disable or allow preemption around read/write locks.
We currently disable interrupts during any non thread-
safe code, using a call safe(fn) API call to sim-
plify application porting. The runtime overhead of the
instructions that are used to disable interrupts is only a
few clock cycles and they do not affect the Linux ker-
nel’s abilities to reclaim the cores. Memory allocation
code is a special case that often optimizes away locks
using thread-local storage. We preload our own ver-
sion of the C and C++ libraries that disable interrupts
(and hence preemption) during the execution of alloca-
tion functions. If these functions take a long time, it will
affect the tail latency observed with Shinjuku.

Any application that frequently uses coarse-grain or
contested locks within requests will scale poorly regard-

352 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

less of scheduling policy on any system, including Shin-
juku.

4 Evaluation
We compare Shinjuku to IX [16] and ZygOS [46], two
recent systems that use d-FCFS and approximate c-
FCFS respectively to improve tail latency. All three sys-
tems are built on top of Dune [15]. We use the latest IX
and ZygOS versions available at [4].

4.1 Experimental Methodology
Machines: We use a cluster of 6 client and one server
machines, connected through an Arista 7050-S switch
with 48 10GbE ports. The client machines each include
two Intel Xeon E5-2630 CPUs operating at 2.3GHz.
Their NICs are a mixture of Intel 82599ES and So-
larflare SFC9020 10GbE NICs. The server machine that
runs IX, ZygOS, or Shinjuku includes two Intel E5-2658
CPUs operating at 2.3GHz, 128GB of DRAM, and an
Intel 82599ES 10Gb NIC. All machines run Ubuntu
LTS 16.0.4 with the 4.4.0 Linux kernel. Hyperthread-
ing is always enabled unless noted. NICs are configured
as half-duplex by the IX and ZygOS drivers and we use
the same setting for Shinjuku. To perform scalability ex-
periments, we also use the server machine with a 40Gb
Intel XL710-QDA2 NIC and an identical E5-2658 two-
socket machine as the client.

Each of the two server CPUs has 12 cores and 24 hy-
perthreads. However, ZygOS and IX can only support
up to 16 hyperthreads as their network drivers are lim-
ited to 16 RSS RX queues. Hence, we use an 8-core
(16-hyperthread) configuration for most experiments.
Shinjuku always uses two of the available hyperthreads
for the networking subsystem and dispatcher. Hence,
our results use the notation Shinjuku(x) to specify
that Shinjuku uses x-2 hyperthreads for workers and
a total of x hyperthreads. The notation IX(x) and
ZygOS(x) specify that IX and ZygOS use x hyper-
threads, all for d-FCFS or c-FCFS processing respec-
tively.

Networking: We use the following networking sub-
system with Shinjuku. A single hyperthread, co-located
on the same physical core with the dispatcher, polls the
NIC queue and processes raw packets. It performs UDP
processing, identifies requests, and optionally parses the
request header to identify types. The Shinjuku workers
process network replies. This simple subsystem is suffi-
cient to evaluate Shinjuku. Since Shinjuku decouples
network processing from request scheduling, we can
combine Shinjuku in the future with alternative systems
that implement other transport protocols and use opti-
mizations such as multithreaded stacks [31, 22] or stacks

that offload networking to a SmartNIC [33, 18, 53, 19].
The latter will free x86 hyperthreads for Shinjuku work-
ers. If the SmartNIC is connected to the processor chip
through a coherent interconnect like Intel’s UPI, we can
also offload the Shinjuku dispatcher to the NIC cores.

IX supports both UDP and TCP networking. We use
it with UDP and a batch size of 64. ZygOS supports
only TCP networking [4], but is configured to use ex-
actly one TCP segment per request and reply. Hence,
ZygOS requests have some additional service time for
TCP processing (< 0.25µsec), but are otherwise simi-
lar to UDP-based IX and Shinjuku requests.

Workloads: We use one synthetic and one real work-
load. The synthetic workload is a server application
where requests perform dummy work that we can con-
trol in order to emulate any target distribution of service
times. This synthetic server allows us to derive insights
about how the three systems compare across a large ap-
plication space.

We also use RocksDB version 5.13 [26], a popular
and widely deployed key-value store developed by Face-
book. The IX, ZygOS, and Shinjuku servers handle
RocksDB queries that may be simple get/put requests or
range scans. We configure RocksDB to keep all data in
DRAM in order to evaluate all three systems under the
lowest latency requirements possible. If some RocksDB
requests had to access data in Flash, the variability of
service times would be even higher, and the preemp-
tive Shinjuku would perform even better than the non-
preemptive IX and ZygOS.

We developed an open loop load generator similar to
mutilate [36] that transmits requests over either TCP or
UDP. The load generator starts a large number of con-
nections in a set of client machines, while it measures
latency from a single unloaded machine. Unless oth-
erwise noted, we use 1920 persistent TCP connections
(ZygOS) and 1920 distinct UDP 5-tuples (IX and Shin-
juku). Using fewer connections significantly affected
the performance of IX and ZygOS (see §3.6).

4.2 Synthetic Workload Comparison
Figure 5 compares Shinjuku to IX and ZygOS for three
service time distributions. Figure 5a uses a fixed ser-
vice time of 1µsec, while Figure 5b uses an exponential
distribution with a mean of 1µsec. These two cases are
ideal for IX that uses d-FCFS. IX benefits further from
its ability to batch similarly sized requests. Shinjuku
(SQ) performs close to IX, despite exclusively using two
hyperthreads for networking and the dispatcher and de-
spite preempting requests that exceed 5µsec. In this
case, Shinjuku places preempted requests at the head of
the queues. Moreover, preemption is fast and for light-

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 353

IX(16) ZygOS(16) Shinjuku(16)-SQ

0 2 4 6

Throughput (MRPS)

0

100

200

300

400

9
9

%
 L

a
te

n
c
y
 (

u
s
)

(a) Fixed(1)

0 2 4 6

Throughput (MRPS)

0

200

400

600

800

1000

(b) Exp(1)

0 2 4 6

Throughput (MRPS)

0

200

400

600

800

1000

(c)
Bimodal(99.5−0.5,0.5−500)

Figure 5: Systems comparison with synthetic workloads. Shinjuku uses the single queue policy.

IX(16) ZygOS(16) Shinjuku(16)-MQ

0 100 200 300

Throughput (kRPS)

10
2

10
3

10
4

10
5

9
9
%

 S
lo

w
d
o
w

n

(a) Two request types
Bimodal(50−1,50−100)

0 100 200 300

Throughput (kRPS)

10
2

10
3

10
4

9
9
%

 S
lo

w
d
o
w

n

(b) Three request types
Trimodal(33.3−1,33.3−10,33.3−100)

Figure 6: Systems comparison with multi-modal syn-
thetic workloads. Shinjuku uses the multi-queue policy.

tailed workloads only a few requests will be preempted
allowing Shinjuku to outperform ZygOS for both sce-
narios. ZygOS also has a high stealing rate (60%) even
for homogeneous workloads which exacerbates its steal-
ing overheads. A similar performance drop was also ob-
served in the original ZygOS paper [46].

Figure 5c uses a Bimodal(99.5− 0.5,0.5− 500)
service time distribution where 99.5% of the requests
have a 0.5µsec service time and 0.5% 500µsec. Shin-
juku with the single queue policy is vastly better than
both IX and ZygOS, achieving up to 50% lower tail
latency at low load and 5x better throughput for a
given 300µs tail latency target. IX and ZygOS lack pre-
emption, hence the 0.5% of long requests determine the
overall 99th percentile tail latency as short requests are
frequently blocked behind them. The task stealing in
ZygOS improves upon IX but is not sufficient to deal
with the high dispersion in service times. In contrast,
Shinjuku preempts long requests and places them at the
tail of the single queue to allow short requests to com-
plete quickly.

Figure 6 evaluates the three systems with multiple re-
quest types, a key experiment that was missing from the
original IX and ZygOS papers. We use Shinjuku’s multi-
queue policy which assumes knowledge of the request
types (e.g., from packet inspection). Figure 6a uses a
Bimodal(50−1,50−100) workload, while Figure 6b
uses a Trimodal(33−1,33−10,33−100) workload.
In all cases, Shinjuku places preempted requests to the
head of their corresponding queues. Both figures show
the 99th percentile of request slowdown (overall request
latency / service time) with a logarithmic y-axis. The
preemptive, multi-queue policy allows Shinjuku to out-
perform IX and Zygos by having 94% lower slowdown
at low load and over 2x higer throughput (RPS). In
addition to the frequent preemption that avoids head-of-
line blocking, Shinjuku benefits from its ability to select
the type of requests (long vs. short) to serve next based
on their ratio of queuing time to target latency.

4.3 Shinjuku Analysis
How important is frequent preemption? Figure 7a

354 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

100us 50us 20us 5us 1 Dispatcher 2 Dispatchers 64-Byte Frames 258-Byte Frames

0 100 200 300

Throughput (kRPS)

0

20

40

60

80

100
9

9
%

 S
lo

w
d

o
w

n

(a)

0 5 10 15 20

Worker Cores

0

2

4

6

8

10

T
h

ro
u

g
h

p
u

t
(M

R
P

S
)

(b)

0 5 10 15 20

Worker Cores

0

10

20

30

40

T
h

ro
u

g
h

p
u

t
(G

b
p

s
)

(c)
Figure 7: (a) Two request types Bimodal(50−1,50−100) with varying preemption time slice. (b) Shinjuku through-
put (Million RPS) as we scale the worker cores. (c) Shinjuku throughput (Gbps) as we scale the worker cores.

ZygOS(16) Shinjuku(16) IX(16)
ZygOS(16) Shinjuku(16)-SQ without Preemption Shinjuku(16)-SQ Shinjuku(16)-MQ

0 200 400 600

Throughput (kRPS)

0

200

400

600

800

1000

9
9

%
 L

a
te

n
c
y
 (

u
s
)

(a)

0 5 10 15 20

Throughput (kRPS)

0

2000

4000

6000

9
9

%
 G

E
T

 L
a

te
n

c
y
 (

u
s
)

(b)

0 5 10 15 20

Throughput (kRPS)

0

2000

4000

6000

8000

10000

9
9

%
 S

C
A

N
 L

a
te

n
c
y
 (

u
s
)

(c)
Figure 8: RocksDB (a) Shinjuku, IX, and ZygOS 99.5% GET 0.5% SCAN(1000). (b + c) Shinjuku Performance -
50% GET(b) 50% SCAN(5000)(c).

varies the preemption interval for a Bimodal(50−
1,50− 100) synthetic workload. Shinjuku uses the
multi-queue policy. The shorter the preemption interval,
the better Shinjuku performs as the impact of 100µsec
requests on 1µsec is reduced. Shinjuku performs well
even at the very frequent 5µsec preemption interval.

How does Shinjuku scale? Figures 7{b,c} exam-
ine how Shinjuku scales with more workers. We issue
short requests with 1µsec fixed service time to stress the
dispatcher. We also use the Intel XL710-QDA2 40Gb
NICs so that networking is not a bottleneck. Since each
worker thread can saturate its core, we turn off hyper-
threading and pin each worker thread to a physical core.
We use the two hyperthreads in the 12th physical core
for the dispatcher and the networking threads. Figure 7b
shows that a single dispatcher thread scales almost lin-
early to 11 worker cores, which is the socket size in
our server. A second dispatcher thread allows Shinjuku
to schedule across the 22 worker cores on both sock-
ets for a single application. Shinjuku can schedule 5M
and 9.5M RPS with 1 and 2 dispatchers respectively.
Figure 7c measures the outgoing network throughput of

Shinjuku using two dispatchers. Shinjuku saturates the
40Gb NIC when reply frames are as short as 258 bytes.

These two figures validate that a single Shinjuku ap-
plication can scale to high core counts and high line rates
even with short 1µsec service times.

4.4 RocksDB Comparison
We use RocksDB with a simple server we ported to IX,
ZygOS, and Shinjuku. Client requests are looked up
in a RocksDB database created on an in-memory file
system (/tmpfs/) with random key-value pairs. We use
two request types: GET requests for a single key-value
pair that execute within 6µsec; SCAN requests that scan
1,000 or 5,000 key-value pairs and require 240µsec or
1,200µsec respectively. We use memory-mapped plain
tables as the backing files to avoid memory copies and
access to block devices. Shinjuku uses a preemption
time slice of 15µsec and places preempted requests at
the head of their corresponding queues for the multi-
queue policy and at the tail for the single-queue policy.

Figure 8a compares IX, ZygOS, and Shinjuku with
the single queue policy for a 99.5-0.5 mix of GET and

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 355

SCAN(1000) requests. Shinjuku provides a vast im-
provement over ZygOS in tail latency (88% decrease)
and throughput (6.6x improvement). Frequent preemp-
tion in Shinjuku allows GET requests to avoid long
queuing times due to SCAN requests. IX performs even
worse due to the combination of highly imbalanced re-
quest service times and d-FCFS scheduling.

Preemption and queue selection policy matter:
Figures 8b and 8c use a 50-50 workload between GET
and SCAN(5000) requests. In addition to comparing
with ZygOS, we modified the Shinjuku dispatcher to
show the impact of using Shinjuku without preemption,
the single-queue preemptive policy, and the multi-queue
preemptive policy. IX is omitted because its latency is
outside the range of our plot. The results show that
Shinjuku without preemption (SQ without preemption)
favors the longer SCAN requests over the shorter GET
requests. The addition of preemption (SQ) fixes this
problem and allows both request types to achieve fair
throughput and low tail latency. The multi-queue policy
(MQ) improves SCAN requests as it avoids excessive
queuing for them as well. ZygOS performs significantly
worse even than Shinjuku without preemption. ZygOS
uses distributed queuing and is susceptible to head-of-
line blocking for requests within the same connection.
This supports our decision to decouple network process-
ing and request scheduling in Shinjuku.

5 Related Work
Optimized network stacks: There is significant
work in optimizing network stacks, including polling
based processing (DPDK [3]), multi-core scalability
(mTCP [31]), modularity and specialization (Sand-
storm [40]), and OS bypass (Andromeda [22]). Shin-
juku is orthogonal to this work as it optimizes request
scheduling after network protocol processing.

Dataplane operating systems: Several recent sys-
tems optimize for throughput and tail latency by sep-
arating the OS dataplane from the OS control plane, an
idea originating in Exokernel [25]. IX [16], Arrakis [45],
MICA [39], Chronos [32], and ZygOS [46] fall in this
category. Shinjuku improves on these systems by intro-
ducing preemptive scheduling that allows short requests
to avoid excessive queuing.

Task scheduling: Li et al. [38] control tail latency
by reducing the amount of resources dedicated to long-
running requests that violate the SLO. Haque et al. [29]
take the opposite approach and devote more resources
to stragglers so that they finish faster. Interestingly, both
approaches work well. However, these approaches are
applicable to millisecond-scale workloads and require
workloads that are dynamically parallelizable. Shinjuku

allows the development of efficient scheduling policies
for requests 3 orders of magnitude shorter than what this
line of work can handle.

Flow scheduling: PIAS [12] is a network flow
scheduling mechanism that uses hardware priority
queues available in switches to approximate the Short-
est Job First (SJF) scheduling policy and prioritize short
flows over longs ones. We do not follow a similar ap-
proach in Shinjuku as SJF is optimal in terms of mini-
mizing average but not tail latency [57]. Moreover, in
order to be effective, PIAS requires some form of con-
gestion control to keep the queue length short. This is
not practical in non-networked settings where the run-
time does not control the application.

Exit-less interrupts: The idea of safe, low-overhead
interrupts was introduced in ELI for fast delivery of in-
terrupts to VMs [10]. ZygOS [46] uses inter-processor
interrupts for work stealing but does not implement pre-
emptive scheduling. Shinjuku uses Dune [15] to opti-
mize processor-to-processor interrupts.

User-space thread management: Starting with
scheduler activations [11], there have been several
efforts to implement efficient, user-space thread li-
braries [8, 56, 48, 1]. They all focus on cooperative
scheduling. Shinjuku shows that preemptive scheduling
is practical at microsecond-scales and leads to low tail
latency and high throughput.

6 Conclusion

Shinjuku uses hardware support for virtualization to
make frequent preemption practical at the microsec-
ond scale. Hence, its scheduling policies can avoid
the common pitfall of non-preemptive policies where
short requests are blocked behind long requests. Shin-
juku provides low tail latency and high throughput for
a wide range of distributions and request service times
regardless of the number of client connections. For
the RocksDB KVS, we show that Shinjuku improves
upon the recently published ZygOS system by 6.6x in
throughput and 88% in tail latency.

Acknowledgements

We thank our shepherd, Irene Zhang, and the anony-
mous NSDI reviewers for their helpful feedback. We
also thank John Ousterhout, Adam Wierman, and Ana
Klimovic for providing feedback on early versions of
this paper. This work was supported by the Stanford
Platform Lab and by gifts from Google, Huawei, and
Samsung.

356 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

References

[1] libfiber: A user space threading library support-
ing multi-core systems. https://github.com/
brianwatling/libfiber, 2015.

[2] ebpf - extended berkeley packet filter. http:
//prototype-kernel.readthedocs.io/en/
latest/bpf/ , 2016.

[3] Data plan development kit. http://www.dpdk.org/,
2018.

[4] Ix-project: Protected dataplane for low latency and high perfor-
mance. https://github.com/ix-project/ , 2018.

[5] libuv: Cross-platform asynchronous i/o. https://libuv.
org/, 2018.

[6] Memcached. https://memcached.org/ , 2018.

[7] Shenango: Achieving high CPU efficiency for latency-sensitive
datacenter workloads. In 16th USENIX Symposium on
Networked Systems Design and Implementation (NSDI 19),
Boston, MA, 2019. USENIX Association.

[8] Atul Adya, Jon Howell, Marvin Theimer, William J. Bolosky,
and John R. Douceur. Cooperative task management with-
out manual stack management. In Proceedings of the General
Track of the Annual Conference on USENIX Annual Technical
Conference, ATC ’02, pages 289–302. USENIX Association,
2002.

[9] Mohammad Alizadeh, Albert Greenberg, David A. Maltz, Ji-
tendra Padhye, Parveen Patel, Balaji Prabhakar, Sudipta Sen-
gupta, and Murari Sridharan. Data center tcp (dctcp). In Pro-
ceedings of the ACM SIGCOMM 2010 Conference, SIGCOMM
’10, pages 63–74, New Delhi, India, 2010. ACM.

[10] Nadav Amit, Abel Gordon, Nadav Har’El, Muli Ben-Yehuda,
Alex Landau, Assaf Schuster, and Dan Tsafrir. Bare-metal per-
formance for virtual machines with exitless interrupts. Com-
mun. ACM, 59(1):108–116, December 2015.

[11] Thomas E. Anderson, Brian N. Bershad, Edward D. Lazowska,
and Henry M. Levy. Scheduler activations: Effective kernel
support for the user-level management of parallelism. In Pro-
ceedings of the Thirteenth ACM Symposium on Operating Sys-
tems Principles, SOSP ’91, pages 95–109, Pacific Grove, Cali-
fornia, USA, 1991. ACM.

[12] Wei Bai, Li Chen, Kai Chen, Dongsu Han, Chen Tian, and Hao
Wang. Information-agnostic flow scheduling for commodity
data centers. In 12th USENIX Symposium on Networked Sys-
tems Design and Implementation (NSDI 15), pages 455–468,
Oakland, CA, 2015. USENIX Association.

[13] L. A. Barroso, J. Dean, and U. Holzle. Web search for a planet:
The google cluster architecture. IEEE Micro, 23(2):22–28,
March 2003.

[14] Luiz Barroso, Mike Marty, David Patterson, and Parthasarathy
Ranganathan. Attack of the killer microseconds. Commun.
ACM, 60(4):48–54, March 2017.

[15] Adam Belay, Andrea Bittau, Ali Mashtizadeh, David Terei,
David Mazières, and Christos Kozyrakis. Dune: Safe user-level
access to privileged cpu features. In Proceedings of the 10th
USENIX Conference on Operating Systems Design and Imple-
mentation, OSDI’12, pages 335–348, Hollywood, CA, USA,
2012. USENIX Association.

[16] Adam Belay, George Prekas, Ana Klimovic, Samuel Grossman,
Christos Kozyrakis, and Edouard Bugnion. Ix: A protected dat-
aplane operating system for high throughput and low latency.
In Proceedings of the 11th USENIX Conference on Operating
Systems Design and Implementation, OSDI’14, pages 49–65,
Broomfield, CO, 2014. USENIX Association.

[17] Sol Boucher, Anuj Kalia, David G. Andersen, and Michael
Kaminsky. Putting the ”micro” back in microservice. In
2018 USENIX Annual Technical Conference (USENIX ATC
18), pages 645–650, Boston, MA, 2018. USENIX Association.

[18] Broadcom. Ps225. https://www.broadcom.
com/products/ethernet-connectivity/
network-adapters/ps225 , 2017.

[19] Cavium. Liquidio smartnic. https://www.cavium.com/
product-liquidio-adapters.html , 2018.

[20] Intel Corp. Intel virtualization technology. https:
//www.intel.com/content/www/us/en/
virtualization/virtualization-technology/
intel-virtualization-technology.html , 2018.

[21] Microsoft Corp. Receive side scaling. http:
//msdn.microsoft.com/library/windows/
hardware/ff556942.aspx , 2018.

[22] Michael Dalton, David Schultz, Jacob Adriaens, Ahsan Are-
fin, Anshuman Gupta, Brian Fahs, Dima Rubinstein, En-
rique Cauich Zermeno, Erik Rubow, James Alexander Docauer,
Jesse Alpert, Jing Ai, Jon Olson, Kevin DeCabooter, Marc
de Kruijf, Nan Hua, Nathan Lewis, Nikhil Kasinadhuni, Ric-
cardo Crepaldi, Srinivas Krishnan, Subbaiah Venkata, Yossi
Richter, Uday Naik, and Amin Vahdat. Andromeda: Perfor-
mance, isolation, and velocity at scale in cloud network virtu-
alization. In 15th USENIX Symposium on Networked Systems
Design and Implementation (NSDI 18), pages 373–387, Ren-
ton, WA, 2018. USENIX Association.

[23] Jeffrey Dean and Luiz André Barroso. The tail at scale. Com-
munications of the ACM, 56:74–80, 2013.

[24] Kenneth J. Duda and David R. Cheriton. Borrowed-virtual-
time (bvt) scheduling: Supporting latency-sensitive threads in
a general-purpose scheduler. In Proceedings of the Seventeenth
ACM Symposium on Operating Systems Principles, SOSP ’99,
pages 261–276, Charleston, South Carolina, USA, 1999. ACM.

[25] D. R. Engler, M. F. Kaashoek, and J. O’Toole, Jr. Exokernel:
An operating system architecture for application-level resource
management. In Proceedings of the Fifteenth ACM Symposium
on Operating Systems Principles, SOSP ’95, pages 251–266,
Copper Mountain, Colorado, USA, 1995. ACM.

[26] Facebook. Rocksdb. http://rocksdb.org/ , 2018.

[27] Yi Guo, Jisheng Zhao, Vincent Cave, and Vivek Sarkar. Slaw:
A scalable locality-aware adaptive work-stealing scheduler for
multi-core systems. In Proceedings of the 15th ACM SIG-
PLAN Symposium on Principles and Practice of Parallel Pro-
gramming, PPoPP ’10, pages 341–342, Bangalore, India, 2010.
ACM.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 357

https://github.com/brianwatling/libfiber
https://github.com/brianwatling/libfiber
http://prototype-kernel.readthedocs.io/en/latest/bpf/
http://prototype-kernel.readthedocs.io/en/latest/bpf/
http://prototype-kernel.readthedocs.io/en/latest/bpf/
http://www.dpdk.org/
https://github.com/ix-project/
https://libuv.org/
https://libuv.org/
https://memcached.org/
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/ps225
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/ps225
https://www.broadcom.com/products/ethernet-connectivity/network-adapters/ps225
https://www.cavium.com/product-liquidio-adapters.html
https://www.cavium.com/product-liquidio-adapters.html
https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
https://www.intel.com/content/www/us/en/virtualization/virtualization-technology/intel-virtualization-technology.html
http://msdn.microsoft.com/library/ windows/hardware/ff556942.aspx
http://msdn.microsoft.com/library/ windows/hardware/ff556942.aspx
http://msdn.microsoft.com/library/ windows/hardware/ff556942.aspx
http://rocksdb.org/

[28] Sangjin Han, Keon Jang, Aurojit Panda, Shoumik Palkar,
Dongsu Han, and Sylvia Ratnasamy. Softnic: A software nic to
augment hardware. Technical Report UCB/EECS-2015-155,
EECS Department, University of California, Berkeley, May
2015.

[29] Md E. Haque, Yong hun Eom, Yuxiong He, Sameh Elnikety,
Ricardo Bianchini, and Kathryn S. McKinley. Few-to-many:
Incremental parallelism for reducing tail latency in interactive
services. In Proceedings of the Twentieth International Con-
ference on Architectural Support for Programming Languages
and Operating Systems, ASPLOS ’15, pages 161–175, Istan-
bul, Turkey, 2015. ACM.

[30] Md E. Haque, Yuxiong He, Sameh Elnikety, Thu D. Nguyen,
Ricardo Bianchini, and Kathryn S. McKinley. Exploiting het-
erogeneity for tail latency and energy efficiency. In Proceedings
of the 50th Annual IEEE/ACM International Symposium on Mi-
croarchitecture, MICRO-50 ’17, pages 625–638, Cambridge,
Massachusetts, 2017. ACM.

[31] EunYoung Jeong, Shinae Wood, Muhammad Jamshed, Haewon
Jeong, Sunghwan Ihm, Dongsu Han, and KyoungSoo Park.
mtcp: a highly scalable user-level TCP stack for multicore sys-
tems. In 11th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 14), pages 489–502, Seattle,
WA, 2014. USENIX Association.

[32] Rishi Kapoor, George Porter, Malveeka Tewari, Geoffrey M.
Voelker, and Amin Vahdat. Chronos: Predictable low latency
for data center applications. In Proceedings of the Third ACM
Symposium on Cloud Computing, SoCC ’12, pages 9:1–9:14,
San Jose, California, 2012. ACM.

[33] Antoine Kaufmann, SImon Peter, Naveen Kr. Sharma, Thomas
Anderson, and Arvind Krishnamurthy. High performance
packet processing with flexnic. In Proceedings of the Twenty-
First International Conference on Architectural Support for
Programming Languages and Operating Systems, ASPLOS
’16, pages 67–81, Atlanta, Georgia, USA, 2016. ACM.

[34] Sanjeev Kumar, Christopher J. Hughes, and Anthony Nguyen.
Carbon: Architectural support for fine-grained parallelism on
chip multiprocessors. In Proceedings of the 34th Annual In-
ternational Symposium on Computer Architecture, ISCA ’07,
pages 162–173, San Diego, California, USA, 2007. ACM.

[35] Redis Labs. Redis. https://redis.io/ , 2018.

[36] Jacob Leverich and Christos Kozyrakis. Reconciling high
server utilization and sub-millisecond quality-of-service. In
Proceedings of the Ninth European Conference on Com-
puter Systems, EuroSys ’14, pages 4:1–4:14, Amsterdam, The
Netherlands, 2014. ACM.

[37] Jialin Li, Naveen Kr. Sharma, Dan R. K. Ports, and Steven D.
Gribble. Tales of the tail: Hardware, os, and application-level
sources of tail latency. In Proceedings of the ACM Symposium
on Cloud Computing, SOCC ’14, pages 9:1–9:14, Seattle, WA,
USA, 2014. ACM.

[38] Jing Li, Kunal Agrawal, Sameh Elnikety, Yuxiong He, I-
Ting Angelina Lee, Chenyang Lu, and Kathryn S. McKinley.
Work stealing for interactive services to meet target latency. In
Proceedings of the 21st ACM SIGPLAN Symposium on Princi-
ples and Practice of Parallel Programming, PPoPP ’16, pages
14:1–14:13, Barcelona, Spain, 2016. ACM.

[39] Hyeontaek Lim, Dongsu Han, David G. Andersen, and Michael
Kaminsky. Mica: A holistic approach to fast in-memory key-
value storage. In Proceedings of the 11th USENIX Conference
on Networked Systems Design and Implementation, NSDI’14,
pages 429–444, Seattle, WA, 2014. USENIX Association.

[40] Ilias Marinos, Robert N.M. Watson, and Mark Handley. Net-
work stack specialization for performance. In Proceedings of
the 2014 ACM Conference on SIGCOMM, SIGCOMM ’14,
pages 175–186, Chicago, Illinois, USA, 2014. ACM.

[41] Radhika Mittal, Vinh The Lam, Nandita Dukkipati, Emily
Blem, Hassan Wassel, Monia Ghobadi, Amin Vahdat, Yaogong
Wang, David Wetherall, and David Zats. Timely: Rtt-based
congestion control for the datacenter. In Proceedings of the
2015 ACM Conference on Special Interest Group on Data Com-
munication, SIGCOMM ’15, pages 537–550, London, United
Kingdom, 2015. ACM.

[42] Jayakrishnan Nair, Adam Wierman, and Bert Zwart. The funda-
mentals of heavy-tails: Properties, emergence, and identifica-
tion. In Proceedings of the ACM SIGMETRICS/International
Conference on Measurement and Modeling of Computer Sys-
tems, SIGMETRICS ’13, pages 387–388, Pittsburgh, PA, USA,
2013. ACM.

[43] Rajesh Nishtala, Hans Fugal, Steven Grimm, Marc
Kwiatkowski, Herman Lee, Harry C. Li, Ryan McElroy,
Mike Paleczny, Daniel Peek, Paul Saab, David Stafford, Tony
Tung, and Venkateshwaran Venkataramani. Scaling memcache
at facebook. In Presented as part of the 10th USENIX
Symposium on Networked Systems Design and Implementation
(NSDI 13), pages 385–398, Lombard, IL, 2013. USENIX.

[44] John Ousterhout, Arjun Gopalan, Ashish Gupta, Ankita Kejri-
wal, Collin Lee, Behnam Montazeri, Diego Ongaro, Seo Jin
Park, Henry Qin, Mendel Rosenblum, Stephen Rumble, Ryan
Stutsman, and Stephen Yang. The ramcloud storage system.
ACM Trans. Comput. Syst., 33(3):7:1–7:55, August 2015.

[45] Simon Peter, Jialin Li, Irene Zhang, Dan R. K. Ports, Doug
Woos, Arvind Krishnamurthy, Thomas Anderson, and Timothy
Roscoe. Arrakis: The operating system is the control plane.
In 11th USENIX Symposium on Operating Systems Design and
Implementation (OSDI 14), pages 1–16, Broomfield, CO, 2014.
USENIX Association.

[46] George Prekas, Marios Kogias, and Edouard Bugnion. Zygos:
Achieving low tail latency for microsecond-scale networked
tasks. In Proceedings of the 26th Symposium on Operating Sys-
tems Principles, SOSP ’17, pages 325–341, Shanghai, China,
2017. ACM.

[47] N. Provos and N. Mathewson. libevent: An event notification
library. http://libevent.org , 2018.

[48] Henry Qin, Qian Li, Jacqueline Speiser, Peter Kraft, and John
Ousterhout. Arachne: Core-aware thread management. In 13th
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 18), pages 145–160, Carlsbad, CA, 2018.
USENIX Association.

[49] Gang Ren, Eric Tune, Tipp Moseley, Yixin Shi, Silvius Rus,
and Robert Hundt. Google-wide profiling: A continuous pro-
filing infrastructure for data centers. IEEE Micro, pages 65–79,
2010.

358 16th USENIX Symposium on Networked Systems Design and Implementation USENIX Association

https://redis.io/
http://libevent.org

[50] Sepideh Roghanchi, Jakob Eriksson, and Nilanjana Basu.
Ffwd: Delegation is (much) faster than you think. In Proceed-
ings of the 26th Symposium on Operating Systems Principles,
SOSP ’17, pages 342–358, Shanghai, China, 2017. ACM.

[51] Daniel Sanchez, Richard M. Yoo, and Christos Kozyrakis.
Flexible architectural support for fine-grain scheduling. In Pro-
ceedings of the Fifteenth Edition of ASPLOS on Architectural
Support for Programming Languages and Operating Systems,
ASPLOS XV, pages 311–322, Pittsburgh, Pennsylvania, USA,
2010. ACM.

[52] Mellanox Technologies. Rdma over converged ethernet.
http://www.mellanox.com/related-docs/
whitepapers/roce_in_the_data_center.pdf ,
2014.

[53] Mellanox Technologies. Bluefield multicore system on
chip. http://www.mellanox.com/related-docs/
npu-multicore-processors/PB_Bluefield_
SoC.pdf , 2017.

[54] Stephen Tu, Wenting Zheng, Eddie Kohler, Barbara Liskov, and
Samuel Madden. Speedy transactions in multicore in-memory

databases. In Proceedings of the Twenty-Fourth ACM Sympo-
sium on Operating Systems Principles, SOSP ’13, pages 18–32,
Farminton, Pennsylvania, 2013. ACM.

[55] Kaushik Veeraraghavan, Justin Meza, David Chou, Wonho
Kim, Sonia Margulis, Scott Michelson, Rajesh Nishtala, Daniel
Obenshain, Dmitri Perelman, and Yee Jiun Song. Kraken:
Leveraging live traffic tests to identify and resolve resource
utilization bottlenecks in large scale web services. In 12th
USENIX Symposium on Operating Systems Design and Imple-
mentation (OSDI 16), pages 635–651, Savannah, GA, 2016.
USENIX Association.

[56] Rob von Behren, Jeremy Condit, Feng Zhou, George C. Nec-
ula, and Eric Brewer. Capriccio: Scalable threads for internet
services. In Proceedings of the Nineteenth ACM Symposium
on Operating Systems Principles, SOSP ’03, pages 268–281,
Bolton Landing, NY, USA, 2003. ACM.

[57] Adam Wierman and Bert Zwart. Is tail-optimal scheduling pos-
sible? Oper. Res., 60(5):1249–1257, September 2012.

USENIX Association 16th USENIX Symposium on Networked Systems Design and Implementation 359

http://www.mellanox.com/related-docs/whitepapers/roce_in_the_data_center.pdf
http://www.mellanox.com/related-docs/whitepapers/roce_in_the_data_center.pdf
http://www.mellanox.com/related-docs/npu-multicore-processors/PB_Bluefield_SoC.pdf
http://www.mellanox.com/related-docs/npu-multicore-processors/PB_Bluefield_SoC.pdf
http://www.mellanox.com/related-docs/npu-multicore-processors/PB_Bluefield_SoC.pdf

	Introduction
	Motivation
	Shinjuku
	Design Overview
	Fast Preemption
	Low-overhead Context Switch
	Preemptive Scheduling
	Implementation
	Discussion

	Evaluation
	Experimental Methodology
	Synthetic Workload Comparison
	Shinjuku Analysis
	RocksDB Comparison

	Related Work
	Conclusion

