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Application Resource Demand Varies Over Time
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Resource Stranding
As one resource bottlenecks, others are left idle.
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Stranded Resource Varies Over Time
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Resource Stranding is Common
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Resource Stranding is Common
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Resource Stranding is Common and Costly
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Resource Stranding
Common and Costly
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How can applications use 
stranded resources?
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The Status Quo
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The Status Quo
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The Status Quo
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The Status Quo
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The Status Quo
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Enough Idle Resources in Aggregate
But not usable by VMs
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Coarse-Grained Units Can’t Use Stranded Resources
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Coarse-Grained Units Can’t Use Stranded Resources
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Conventional Wisdom: Mem Disaggregation

20

System Overhead compared to  
No Disaggregation

Infiniswap    [NSDI ’17] 50% 
(VoltDB (TPC-C), 50% working set in memory)

LegoOS     [OSDI ’18] 68% 
(TensorFlow, 25% working set in memory)

FastSwap     [EuroSys ’20] 67%

(Spark, 60% working set in memory, data from Hermit [NSDI ’23])

Hermit   [NSDI ’23] 43%

(Spark, 60% working set in memory)

CXL Memory Pooling HW not yet widely available
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Hermit   [NSDI ’23] 43%

(Spark, 60% working set in memory)

CXL Memory Pooling HW not yet widely available

Memory Disaggregation 
unstrands memory, 

at the expense of application slowdown.



Granular Programming Frameworks
Decompose Apps into Fine-Grained Units
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Application • Serverless Functions


• Actors (Ray [OSDI ’18])


• Proclets (Nu [NSDI ’23])


• Components (ServiceWeaver [HotOS ’23])

Fine-Grained Units



Can Fine-Grained Units Solve Stranding?
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Fine-Grained Units Can Shift Resource Usage Quickly
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Fine-Grained Units Can Shift Resource Usage Quickly
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Can Fine-Grained Units Solve Stranding?
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Can Fine-Grained Units Solve Stranding?
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Fine-Grained Units Alone Cannot Unstrand
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Resource Disaggregation, through Granular Programming
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Resource Disaggregation, through Granular Programming
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Scheduler that Leaves No Resource Stranded
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Scheduler that Leaves No Resource Stranded
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Scheduler that Leaves No Resource Stranded
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Scheduler that Leaves No Resource Stranded
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Fine-grained resource decoupling  
unlocks stranded resources.



Unstrand resources without 
Resource Disaggregation.
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Our Approach

Granular Programming can disaggregate in SW.

Unstrand resources without 
Resource Disaggregation.



Quicksand
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A new granular programming framework that unstrands resources



Quicksand Goals

1. Use stranded resources wherever and whenever available, even briefly (<1s).


2. Support batch and latency-sensitive applications.


3. Easy to adopt and deploy on hardware today.
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Challenges and Design Overview
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Challenges Quicksand’s Approach
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Maintaining resource proclets granularity
Split / merge 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Resource Proclet Background
Decomposing Unix Processes into Proclets

44



Resource Proclet Background
Decomposing Unix Processes into Proclets
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Cluster

Resource Proclet Background
Decomposing Unix Processes into Proclets
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Cluster

Resource Proclets
Proclets that primarily use one resource
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Resource Proclet Resource Usage
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Resource 
Proclets

CPU
1 core. 

Ephemeral or long-running 
compute.

Cheap memory operations only.

Memory Thread stack. 
Transient allocations (≈ KBs). Small heap regions (MBs).
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Quicksand Proclet Types

• Resource Proclets (RP): Units that primarily use one resource.


• Hybrid Proclet: pair compute and memory proclets temporarily.


• For memory access-intensive logic.


• Re-introduces stranding.
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Quicksand Architecture
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Quicksand Architecture
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Quicksand Architecture
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Quicksand Architecture
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Quicksand Architecture
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Quicksand in Action:  
Training Data Pre-processing
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Pipeline Overview
Example: training data pre-processing
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Quicksand Code
Expressing data pre-processing with high-level frameworks
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  Img processed_img = process(img); 

  queue.push(processed_img); 

});
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Quicksand Code
Expressing data pre-processing with high-level frameworks
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Quicksand Code
Expressing data pre-processing with high-level frameworks

63

qs::ShardedVector<Img> imgs = load_images(); 

qs::ShardedQueue<Img> queue; 

qs::ForAll(qs::seal(imgs), [queue](Img img){ 

  Img processed_img = process(img); 

  queue.push(processed_img); 

});

Vector

Queue

ForAll



Decompose Pipeline into Resource Proclets
Example: training data pre-processing
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Decompose Pipeline into Resource Proclets
Example: training data pre-processing
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Decompose Pipeline into Resource Proclets
Example: training data pre-processing
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Decompose Pipeline into Resource Proclets
Example: training data pre-processing
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Decompose Pipeline into Resource Proclets
Example: training data pre-processing
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Spawning Compute Proclets
qs::ForAll(data, func)
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Spawning Compute Proclets
To use all available compute
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Sealing Memory Proclets
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Latency Hiding by Prefetching
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SW-Defined, Semantics-Informed Prefetching
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Adapting to Load Changes
Split / Merge Compute Proclets
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Quicksand Can Monitor App-Level Signals
Split / Merge Compute Proclets
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Split Compute Proclet to Increase Parallelism
Split / Merge Compute Proclets
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Fine-Grained Work Assignment Enables Splitting
Split / Merge Compute Proclets
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Control Loop for Signal Monitoring
Split / Merge Compute Proclets
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Straggler Mitigation via Splitting
Split / Merge Compute Proclets
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Pipeline Phase Two
Example: training data pre-processing
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Proclet Memory Usage Varies Over Time
Split / Merge Memory Proclets
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Proclet Memory Usage Varies Over Time
Split / Merge Memory Proclets
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Quicksand Enforces Proclet Memory Usage
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Split Memory Proclets to Maintain Granularity
Split / Merge Memory Proclets
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Split Memory Proclets to Maintain Granularity
Split / Merge Memory Proclets
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Cluster

Using Resources with Quicksand
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Cluster

Using Resources with Quicksand
Unprocessed Data Loaded
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Cluster

Using Resources with Quicksand
Start Pre-processing
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Cluster

Unstranding Resources with Quicksand
Start Pre-processing
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Cluster

Unstranding Resources with Quicksand
Storing processed images
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Cluster

Unstranding Resources with Quicksand
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Cluster

Shift Resource Usage Across Servers
Adapt to Co-located Workload
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Cluster

Shift Resource Usage Across Servers
Adapt to Co-located Workload
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Unstrand Resources with Quicksand
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Unstrand Resources with Quicksand
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Quicksand Vision: Leave No Resource Idle
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Quicksand Prototype and Application Porting
• Quicksand implementation: 10k C++ LoC.


• Implemented on top of Nu [NSDI ’23] and Caladan [OSDI ’20].


• Ported 4 applications:
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Application ML Data 
Preprocessing

SocialNetwork 
DeathStarBench 

[ASPLOS ’19]
Distributed 

Sorting

Video Encoding 
ExCamera 
[NSDI ’17]

Quicksand-
related


LoC
21 98 22 203



Evaluation Questions

1. Does Quicksand unstrand resources better than existing solutions?


2. Can Quicksand respond to changes in resource availability and demand?


3. Do resource proclets separate the use of different resources?


4. Does Quicksand’s rapid scaling and fine granularity improve utilization 
and performance?
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Can Quicksand unstrand resources effectively?
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Experiment Setup



Can Quicksand unstrand resources effectively?
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Can Quicksand unstrand resources effectively?
Same amount of idle resources across setups
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Can Quicksand unstrand resources effectively?
Baselines

• Memory disaggregation: Hermit [NSDI ’23]


• Granular programming:   Nu       [NSDI ’23]
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Mem Disaggregation comes with app overhead
But it can unstrand memory
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Resource coupling prevents using stranded memory
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Mem disaggregation doesn’t unstrand CPUs
Nor do granular units that couple resources
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Quicksand outperforms in balanced resource setup
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More results in the paper

• Millisecond-level scaling up/down to:


• Use transiently available resources.


• Adapt to workload changes (phased behavior, load imbalance).


• Resource Proclets effectively separate compute / memory usage.


• The benefits of fine-granularity.
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Quicksand
A new programming framework that unstrands datacenter resources

• Motivation: Resource stranding is a major inefficiency in today’s datacenters.


• Approach: Unstranding via SW, not via HW resource disaggregation.


• Key Insight: Unstrand by decomposing apps into units that primarily use one resource.


• Evaluation: Quicksand can use stranded resources in various workloads.


• Quicksand is open source at: github.com/NSDI25-Quicksand/Quicksand
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http://github.com/NSDI25-Quicksand/Quicksand

