
Quicksand: Harnessing Stranded Datacenter
Resources with Granular Computing
Zhenyuan (Zain) Ruan1, Shihang (Vic) Li2, Kaiyan Fan1, Marcos K. Aguilera3,  

Adam Belay1, Seo Jin Park4, Malte Schwarzkopf2

1MIT CSAIL 2Brown University 3VMware Research by Broadcom 4USC

1

Application Resource Demand Varies Over Time

2

CPU

Memory

Time
0%

100%

0%

100%

1

Stranded

100%

Stranded

Resource Stranding
As one resource bottlenecks, others are left idle.

3

CPU

Memory

Time
0%

100%

0%

100%

1

Stranded

100%

Stranded

Stranded Resource Varies Over Time

4

CPU

Memory

Time
0%

100%

0%

100%

1

Stranded

100%

Stranded

Resource Stranding is Common

5

Resource Stranding is Common

6

Memory-stranded Server

CPU

Mem

 
>30% Memory stranded 

[Li et. al]

❌

Resource Stranding is Common

7

Memory-stranded Server

CPU

Mem

CPU-stranded Server

CPU

Mem

 
>30% Memory stranded 

[Li et. al]
>30% CPU stranded 

[Guo et. al]

❌

❌

Resource Stranding is Common and Costly

8

Memory-stranded Server

CPU

Mem

CPU-stranded Server

CPU

Mem

 
>30% Memory stranded 

[Li et. al]
>30% CPU stranded 

[Guo et. al]

❌

❌

Resource Stranding
Common and Costly

9

Memory-stranded Server

CPU

Mem

CPU-stranded Server

CPU

Mem❌

❌

 
30% Memory Stranded >30% CPU stranded

How can applications use
stranded resources?

10

The Status Quo

11

Datacenter App

The Status Quo

12

Datacenter App

VM VMVM VM

VMVM VM

CPU Mem

The Status Quo

13

Datacenter App

VM VMVM VM

VMVM VM

CPU Mem

Cluster

Server 1

CPU Mem

Server 2 Schedule

The Status Quo

14

Datacenter App

VM VMVM VM

VMVM VM

Cluster

Server 1

CPU Mem

Server 2 Schedule

VM VMVM VM

CPU MemCPU

The Status Quo

15

Datacenter App

VM VMVM VM

VMVM VM

Cluster

Server 1

Server 2 Schedule

VM VMVM VM

CPU Mem

VMVM VM

CPU Mem

The Status Quo

16

Datacenter App

VM VMVM VM

VMVM VM

Cluster

Server 1

Server 2 Schedule

VM VMVM VM

Mem

VMVM VM

CPU Mem

VM

New VM!

CPU

Enough Idle Resources in Aggregate
But not usable by VMs

17

Datacenter App

VM VMVM VM

VMVM VM

Cluster

Server 1

Server 2 Schedule

VM VMVM VM

Mem

VMVM VM

CPU Mem

VM

New VM!

CPU

Coarse-Grained Units Can’t Use Stranded Resources

18

Datacenter App

VM VMVM VM

VMVM VM

Cluster

Server 1

Server 2 Schedule

VM VMVM VM

CPU Mem

VMVM VM

CPU Mem

VM

New VM!

VM

🔥 ❌

Coarse-Grained Units Can’t Use Stranded Resources

19

Datacenter App

VM VMVM VM

VMVM VM

Cluster

Server 1

Server 2 Schedule

VM VMVM VM

CPU Mem

VMVM VM

CPU Mem

VM

New VM!

VM

🔥

❌

❌

Conventional Wisdom: Mem Disaggregation

20

System Overhead compared to  
No Disaggregation

Infiniswap [NSDI ’17] 50% 
(VoltDB (TPC-C), 50% working set in memory)

LegoOS [OSDI ’18] 68% 
(TensorFlow, 25% working set in memory)

FastSwap [EuroSys ’20] 67%

(Spark, 60% working set in memory, data from Hermit [NSDI ’23])

Hermit [NSDI ’23] 43%

(Spark, 60% working set in memory)

CXL Memory Pooling HW not yet widely available

Conventional Wisdom: Mem Disaggregation

21

System Overhead compared to  
No Disaggregation

Infiniswap [NSDI ’17] 50% 
(VoltDB (TPC-C), 50% working set in memory)

LegoOS [OSDI ’18] 68% 
(TensorFlow, 25% working set in memory)

FastSwap [EuroSys ’20] 67%

(Spark, 60% working set in memory, data from Hermit [NSDI ’23])

Hermit [NSDI ’23] 43%

(Spark, 60% working set in memory)

CXL Memory Pooling HW not yet widely available

Memory Disaggregation
unstrands memory,

at the expense of application slowdown.

Granular Programming Frameworks
Decompose Apps into Fine-Grained Units

22

Application • Serverless Functions

• Actors (Ray [OSDI ’18])

• Proclets (Nu [NSDI ’23])

• Components (ServiceWeaver [HotOS ’23])

Fine-Grained Units

Can Fine-Grained Units Solve Stranding?

23

Application

Fine-Grained Units Can Shift Resource Usage Quickly

24

Application

Cluster

CPU Mem

CPU Mem

VM

Nu [NSDI ’23]

Fine-Grained Units Can Shift Resource Usage Quickly

25

Application

Cluster

CPU Mem

VM

Nu [NSDI ’23]

Migrations give
top server more

resources

CPU Mem

Fine-Grained Units Can Shift Resource Usage Quickly

26

Application

Cluster

CPU Mem

CPU Mem

VM

Nu [NSDI ’23]
Using more
resources

Migrations give
top server more

resources

Can Fine-Grained Units Solve Stranding?

27

Application

Cluster

CPU Mem

CPU Mem

VM

No, because of resource coupling

CPU Mem
❌

❌

Can Fine-Grained Units Solve Stranding?

28

Application

Cluster

CPU Mem

CPU Mem

VM

No, because of resource coupling

CPU Mem
❌

❌ 🔥

Fine-Grained Units Alone Cannot Unstrand

29

Application

Cluster

CPU Mem

CPU Mem

VM

CPU Mem
❌

❌ 🔥
Resource coupling

is the culprit behind resource stranding.

30

Application

Resource Disaggregation, through Granular Programming

Resource Disaggregation, through Granular Programming

31

Application

Resource Disaggregation, through Granular Programming

32

Application Cluster

CPU Mem

CPU Mem

Scheduler that Leaves No Resource Stranded

33

Application Cluster

MemCPU

CPU Mem

Scheduler that Leaves No Resource Stranded

34

Application Cluster

CPU Mem

MemCPU

Scheduler that Leaves No Resource Stranded

35

Application Cluster

CPU Mem

CPU Mem

Scheduler that Leaves No Resource Stranded

36

Application Cluster

CPU Mem

CPU Mem

Key Insight 💡

Fine-grained resource decoupling  
unlocks stranded resources.

Unstrand resources without
Resource Disaggregation.

37

Our Approach

38

Our Approach

Granular Programming can disaggregate in SW.

Unstrand resources without
Resource Disaggregation.

Quicksand

39

A new granular programming framework that unstrands resources

Quicksand Goals

1. Use stranded resources wherever and whenever available, even briefly (<1s).

2. Support batch and latency-sensitive applications.

3. Easy to adopt and deploy on hardware today.

40

Challenges and Design Overview

41

Challenges Quicksand’s Approach

Compute and memory are coupled on  
today’s computer architecture

Resource Proclets: 
granular units that primarily  

use one resource

Challenges and Design Overview

42

Challenges Quicksand’s Approach

Compute and memory are coupled on  
today’s computer architecture

Resource Proclets: 
granular units that primarily  

use one resource

App developers think in high-level logic,  
not in terms of resource decoupling

High-level frameworks that 
automatically decompose into  

resource proclets

Challenges and Design Overview

43

Challenges Quicksand’s Approach

Compute and memory are coupled on  
today’s computer architecture

Resource Proclets: 
granular units that primarily  

use one resource

App developers think in high-level logic,  
not in terms of resource decoupling

High-level frameworks that 
automatically decompose into  

resource proclets

Maintaining resource proclets granularity
Split / merge 

resource proclets

Resource Proclet Background
Decomposing Unix Processes into Proclets

44

Resource Proclet Background
Decomposing Unix Processes into Proclets

45

Text

Unix Process

Data
BSS

Heap

Stack

Nu Proclets [NSDI ’23]

Heap

Stack

Heap

Stack

Heap

Stack

Heap

Stack

Heap

Stack

Heap

Stack

Cluster

Resource Proclet Background
Decomposing Unix Processes into Proclets

46

Text

Unix Process

Data
BSS

Heap

Stack

Heap

Stack

Heap

Stack

Heap

Stack

Text
Data
BSS

Text
Data
BSS

Server 1

Server 2

Heap

Stack

Heap

Stack

Heap

Stack

Cluster

Resource Proclets
Proclets that primarily use one resource

47

Text

Unix Process

Data
BSS

Heap

Stack

Heap

Stack

Heap

Stack

Memory Proclet

Compute Proclet

Text
Data
BSS

Text
Data
BSS

Server 1

Server 2

Heap

Stack

Heap

Stack

Memory Proclet

Compute Proclet

Resource Proclet Resource Usage

48

Resource 
Proclets

CPU
1 core. 

Ephemeral or long-running
compute.

Cheap memory operations only.

Memory Thread stack. 
Transient allocations (≈ KBs). Small heap regions (MBs).

Compute Proclet Memory Proclet

Quicksand Proclet Types

• Resource Proclets (RP): Units that primarily use one resource.

• Hybrid Proclet: pair compute and memory proclets temporarily.

• For memory access-intensive logic.

• Re-introduces stranding.

49

Hybrid Proclet Memory ProcletCompute Proclet=

Quicksand Architecture

50

Quicksand

Proclets Memory ProcletCompute Proclet Hybrid Proclet

Distributed Application

Quicksand Architecture

51

Quicksand

Proclets Memory ProcletCompute Proclet Hybrid Proclet

Distributed Application

Frameworks

Quicksand Architecture

52

Quicksand
Batch

ComputeFrameworks

Proclets Memory ProcletCompute Proclet Hybrid Proclet

Parallel Compute

Distributed Application

Quicksand Architecture

53

Quicksand
Batch

Compute
Data

StructuresFrameworks

Proclets Memory ProcletCompute Proclet Hybrid Proclet

Parallel Compute C++ STL

Distributed Application

Quicksand Architecture

54

Quicksand
Batch

Compute
Data

Structures ServicesFrameworks

Proclets Memory ProcletCompute Proclet Hybrid Proclet

Parallel Compute C++ STL Serverless/
Microservices

Distributed Application

Quicksand Architecture

55

Quicksand
Batch

Compute
Data

Structures ServicesFrameworks

Auto-Sharding Layer

Proclets Memory ProcletCompute Proclet Hybrid Proclet

Parallel Compute C++ STL Serverless/
Microservices

Distributed Application

Proclet orchestration and granularity control

Quicksand Architecture

56

Quicksand
Batch

Compute
Data

Structures ServicesFrameworks

Auto-Sharding Layer

Proclets

Runtime Schedule, migrate, and monitor Proclets

Memory ProcletCompute Proclet Hybrid Proclet

Parallel Compute C++ STL Serverless/
Microservices

Distributed Application

Proclet orchestration and granularity control

Quicksand in Action:
Training Data Pre-processing

57

Pipeline Overview
Example: training data pre-processing

58

Training
Stage

Preprocessing stage

(Resize, Rotate, Denoise, etc.)

Loading
stage

 GPU 1

GPU 2

GPU N

…… CPU
Server 1

CPU
Server 2

CPU
Server 3

CPU
Server N…

Quicksand Code
Expressing data pre-processing with high-level frameworks

59

qs::ShardedVector imgs = load_images();

qs::ShardedQueue queue;

qs::ForAll(qs::seal(imgs), [queue](Img img){

 Img processed_img = process(img);

 queue.push(processed_img);

});

Quicksand Code
Expressing data pre-processing with high-level frameworks

60

qs::ShardedVector imgs = load_images();

qs::ShardedQueue queue;

qs::ForAll(qs::seal(imgs), [queue](Img img){

 Img processed_img = process(img);

 queue.push(processed_img);

});

Quicksand Code
Expressing data pre-processing with high-level frameworks

61

qs::ShardedVector imgs = load_images();

qs::ShardedQueue queue;

qs::ForAll(qs::seal(imgs), [queue](Img img){

 Img processed_img = process(img);

 queue.push(processed_img);

});

Quicksand Code
Expressing data pre-processing with high-level frameworks

62

qs::ShardedVector imgs = load_images();

qs::ShardedQueue queue;

qs::ForAll(qs::seal(imgs), [queue](Img img){

 Img processed_img = process(img);

 queue.push(processed_img);

});

Quicksand Code
Expressing data pre-processing with high-level frameworks

63

qs::ShardedVector imgs = load_images();

qs::ShardedQueue queue;

qs::ForAll(qs::seal(imgs), [queue](Img img){

 Img processed_img = process(img);

 queue.push(processed_img);

});

Vector

Queue

ForAll

Decompose Pipeline into Resource Proclets
Example: training data pre-processing

64

Training
Stage

Preprocessing stageLoading
stage

 GPU 1

GPU 2

GPU N

……

Memory Proclet Compute Proclet

Decompose Pipeline into Resource Proclets
Example: training data pre-processing

65

Training
Stage

Preprocessing stageLoading
stage

 GPU 1

GPU 2

GPU N

……

Memory Proclet Compute Proclet

Input Images  
(ShardedVector)

Load

Decompose Pipeline into Resource Proclets
Example: training data pre-processing

66

Training
Stage

Preprocessing stageLoading
stage

 GPU 1

GPU 2

GPU N

……

Memory Proclet Compute Proclet

Input Images  
(ShardedVector)

Load Read

Workers

Decompose Pipeline into Resource Proclets
Example: training data pre-processing

67

Training
Stage

Preprocessing stageLoading
stage

 GPU 1

GPU 2

GPU N

……

Memory Proclet Compute Proclet

Input Images  
(ShardedVector)

Load Read

Workers

Push

Processed Images 
(ShardedQueue)

Pop

Decompose Pipeline into Resource Proclets
Example: training data pre-processing

68

Training
Stage

Preprocessing stageLoading
stage

 GPU 1

GPU 2

GPU N

……

Memory Proclet Compute Proclet

Input Images  
(ShardedVector)

Load Read

Workers

Push

Processed Images 
(ShardedQueue)

Pop

Spawning Compute Proclets
qs::ForAll(data, func)

69

ShardedVector Workers ShardedQueue

Memory Proclet Compute Proclet

Auto-Sharding Layer

Spawning Compute Proclets
To use all available compute

70

ShardedVector Workers ShardedQueue

Memory Proclet Compute Proclet

Auto-Sharding Layer

Sealing Memory Proclets

71

ShardedVector Workers ShardedQueue

Memory Proclet Compute Proclet

🔒

🔒

🔒

🔒

Sealing =
Read-Only

Auto-Sharding Layer

Latency Hiding by Prefetching

72

ShardedVector Workers ShardedQueue

Memory Proclet Compute Proclet

🔒

🔒

🔒

🔒

Prefetch Read
Batches

Auto-Sharding Layer

SW-Defined, Semantics-Informed Prefetching

73

ShardedVector Workers ShardedQueue

Memory Proclet Compute Proclet

🔒

🔒

🔒

🔒
Data structure-tailored

prefetching policy Auto-Sharding Layer

Prefetch Read
Batches

Adapting to Load Changes
Split / Merge Compute Proclets

74

ShardedVector Workers ShardedQueue

Memory Proclet Compute Proclet

🔒

🔒

🔒

🔒 Auto-Sharding Layer

Quicksand Can Monitor App-Level Signals
Split / Merge Compute Proclets

75

ShardedVector Workers ShardedQueue

Memory Proclet Compute Proclet

🔒

🔒

🔒

🔒 Auto-Sharding Layer

⚠ Queue draining
fast.

Split Compute Proclet to Increase Parallelism
Split / Merge Compute Proclets

76

ShardedVector Workers ShardedQueue

Memory Proclet Compute Proclet

🔒

🔒

🔒

🔒 Auto-Sharding Layer

Split yourself

Fine-Grained Work Assignment Enables Splitting
Split / Merge Compute Proclets

77

ShardedVector Workers ShardedQueue

Memory Proclet Compute Proclet

🔒

🔒

🔒

🔒 Auto-Sharding Layer

Split yourself

Control Loop for Signal Monitoring
Split / Merge Compute Proclets

78

ShardedVector Workers ShardedQueue

Memory Proclet Compute Proclet

🔒

🔒

🔒

🔒 Auto-Sharding Layer

✅ Consumption Rate ≈  
Production Rate

Straggler Mitigation via Splitting
Split / Merge Compute Proclets

79

ShardedVector Workers ShardedQueue

Memory Proclet Compute Proclet

🔒

🔒

🔒

🔒 Auto-Sharding Layer

Almost
done

Almost
done Split the slowest

compute proclet

Pipeline Phase Two
Example: training data pre-processing

80

Training
Stage

Preprocessing stageLoading
stage

 GPU 1

GPU 2

GPU N

……

Memory Proclet Compute Proclet

Input Images  
(ShardedVector)

Load Read

Workers

Push

Processed Images 
(ShardedQueue)

Pop

Proclet Memory Usage Varies Over Time
Split / Merge Memory Proclets

81

Memory Proclet Compute Proclet

Push

ShardedQueue

Auto-Sharding Layer

Proclet Memory Usage Varies Over Time
Split / Merge Memory Proclets

82

Memory Proclet Compute Proclet

Push

ShardedQueue

Auto-Sharding Layer

Quicksand Enforces Proclet Memory Usage

83

Memory Proclet Compute Proclet

Push (⚠ proclet size >= 16MiB) ShardedQueue

Auto-Sharding Layer

Split / Merge Memory Proclets

Split Memory Proclets to Maintain Granularity
Split / Merge Memory Proclets

84

Memory Proclet Compute Proclet

ShardedQueue

 
New MP

Auto-Sharding Layer

Push (⚠ proclet size >= 16MiB)

Split yourself

Split Memory Proclets to Maintain Granularity
Split / Merge Memory Proclets

85

Memory Proclet Compute Proclet

Push to new proclet ShardedQueue

Auto-Sharding Layer

Cluster

Using Resources with Quicksand

86

CPU

CPU Mem

VM

Mem

VM

VM VM

Data Preprocessing Pipeline

Cluster

Using Resources with Quicksand
Unprocessed Data Loaded

87

CPU

CPU Mem

VM

Mem

VM

VM VM

Data Preprocessing Pipeline

Cluster

Using Resources with Quicksand
Unprocessed Data Loaded

88

CPU

CPU Mem

VM

Mem

VM

VM VM

Data Preprocessing Pipeline

Cluster

Using Resources with Quicksand
Start Pre-processing

89

CPU

CPU Mem

VM

Mem

VM

VM VM

Data Preprocessing Pipeline

Cluster

Unstranding Resources with Quicksand
Start Pre-processing

90

CPU

CPU Mem

VM

Mem

VM

VM VM

Data Preprocessing Pipeline

❌

Cluster

Unstranding Resources with Quicksand
Storing processed images

91

CPU

CPU Mem

VM

Mem

VM

VM VM

Data Preprocessing Pipeline

❌

Cluster

Unstranding Resources with Quicksand

92

CPU

CPU Mem

VM

Mem

VM

VM VM

Data Preprocessing Pipeline

Storing processed images

Cluster

Shift Resource Usage Across Servers
Adapt to Co-located Workload

93

CPU

CPU Mem

VM

Mem

VM

VM VM

Data Preprocessing Pipeline

Need more
memory

Cluster

Shift Resource Usage Across Servers
Adapt to Co-located Workload

94

CPU

CPU Mem

VM

Mem

VM

VM VM

Data Preprocessing Pipeline

Got more
memory ✅

Unstrand Resources with Quicksand

95

CPU

Memory

Time
0%

100%

0%

100%

1

Stranded

100%

Stranded

Unstrand Resources with Quicksand

96

CPU

Memory

Time
0%

100%

0%

100%

1

Usable by 
Quicksand

100%

Quicksand

Quicksand Vision: Leave No Resource Idle

97

CPU

Memory

Time

1

Usable by 
Quicksand

100%

0%

100%

0%

100%

 Usable

Usable

Usable

Quicksand Prototype and Application Porting
• Quicksand implementation: 10k C++ LoC.

• Implemented on top of Nu [NSDI ’23] and Caladan [OSDI ’20].

• Ported 4 applications:

98

Application ML Data
Preprocessing

SocialNetwork 
DeathStarBench 

[ASPLOS ’19]
Distributed

Sorting

Video Encoding 
ExCamera 
[NSDI ’17]

Quicksand-
related

LoC
21 98 22 203

Evaluation Questions

1. Does Quicksand unstrand resources better than existing solutions?

2. Can Quicksand respond to changes in resource availability and demand?

3. Do resource proclets separate the use of different resources?

4. Does Quicksand’s rapid scaling and fine granularity improve utilization
and performance?

99

Evaluation Questions

1. Does Quicksand unstrand resources better than existing solutions?

2. Can Quicksand respond to changes in resource availability and demand?

3. Do resource proclets separate the use of different resources?

4. Does Quicksand’s rapid scaling and fine granularity improve utilization
and performance?

100

Can Quicksand unstrand resources effectively?

101

Experiment Setup

Can Quicksand unstrand resources effectively?

102

Balanced Setup

CPU

Mem
3x

Experiment Setup

Can Quicksand unstrand resources effectively?
Same amount of idle resources across setups

103

Balanced Setup
CPU-Unbalanced

CPU

Mem

CPU

Mem

CPU

Mem

+

3x

3x 3x

CPU

Mem
3x

CPU

Mem
3x

Mem-Unbalanced

+

Can Quicksand unstrand resources effectively?
Baselines

• Memory disaggregation: Hermit [NSDI ’23]

• Granular programming: Nu [NSDI ’23]

104

Mem Disaggregation comes with app overhead
But it can unstrand memory

105

Th
ro

ug
hp

ut
 (K

 im
ag

es
 /

se
c)

0

7.5

15

22.5

30

Mem-unbalanced CPU-unbalanced Ideal (balanced)

Memory Disaggregation (Hermit) Granular Programming (Nu) Quicksand

17%

Paging
Overhead

Resource coupling prevents using stranded memory

106

Th
ro

ug
hp

ut
 (K

 im
ag

es
 /

se
c)

0

7.5

15

22.5

30

Mem-unbalanced CPU-unbalanced Ideal (balanced)

Memory Disaggregation (Hermit) Granular Programming (Nu) Quicksand

52.5%

Can’t use
stranded memory
 due to coupling

Mem disaggregation doesn’t unstrand CPUs
Nor do granular units that couple resources

107

Th
ro

ug
hp

ut
 (K

 im
ag

es
 /

se
c)

0

7.5

15

22.5

30

Mem-unbalanced CPU-unbalanced Ideal (balanced)

Memory Disaggregation (Hermit) Granular Programming (Nu) Quicksand

≈53% Cannot use
stranded CPUs

Quicksand outperforms in balanced resource setup

108

Th
ro

ug
hp

ut
 (K

 im
ag

es
 /

se
c)

0

7.5

15

22.5

30

Mem-unbalanced CPU-unbalanced Ideal (balanced)

Memory Disaggregation (Hermit) Granular Programming (Nu) Quicksand

≈8%
Cache Misses from

Excessive
User-Level Threads

More results in the paper

• Millisecond-level scaling up/down to:

• Use transiently available resources.

• Adapt to workload changes (phased behavior, load imbalance).

• Resource Proclets effectively separate compute / memory usage.

• The benefits of fine-granularity.

109

Quicksand
A new programming framework that unstrands datacenter resources

• Motivation: Resource stranding is a major inefficiency in today’s datacenters.

• Approach: Unstranding via SW, not via HW resource disaggregation.

• Key Insight: Unstrand by decomposing apps into units that primarily use one resource.

• Evaluation: Quicksand can use stranded resources in various workloads.

• Quicksand is open source at: github.com/NSDI25-Quicksand/Quicksand

110

http://github.com/NSDI25-Quicksand/Quicksand

