Unleashing True Utility Computing
with Quicksand

Zain Ruan®™ Shihang Li* Kaiyan Fan* Marcos K. Aguilera® Adam Belay®

Seo Jin Park Malte Schwarzkopf*

*MIT CSAIL TVMware Research ¥Brown University

vmware
RESEARCH O g e
1

Inefficiency 1: resource overprovisioning

»Today’s datacenters are inefficient (Borg [EuroSys’ 20], AlibabaTraca [BigData’ 17])

Inefficiency 1: resource overprovisioning

* Today’s datacenters are inefficient (Borg [EuroSys’ 20], AlibabaTraca [BigData’ 17])
* Cloud apps have varying resource consumption.

cPU ,_/\/_ Mem IOPS Net
Usage Usage Usage Usage

Time Time Time

Time

Inefficiency 1: resource overprovisioning

* Today’s datacenters are inefficient (Borg [EuroSys’ 20], AlibabaTraca [BigData’ 17])

rs

Time

* Cloud apps have varying resource consumption.
» Avoid running out of resources > overprovisioning

CPU m Mem I0PS Net
Usage Usage Usage Usage

Time Time Time

Inefficiency 1: resource overprovisioning

* Today’s datacenters are inefficient (Borg [EuroSys’ 20], AlibabaTraca [BigData’ 17])
* Cloud apps have varying resource consumption.
» Avoid running out of resources > overprovisioning

Instance

Inefficiency 2: resource stranding

»Try to binpack the instance into available physical machines.

Instance

4 Server 0)
cru [

ver [
_ J

4 Server 1

Mem -

-

~

J

Inefficiency 2: resource stranding

* Try to binpack the instance into available physical machines.
» Cannot fit into either machine

Instance

Running out of memory

e

CPU

Mem

_

Server 0 ‘

_
.
J

/

4 Server 1

Mem -

-

~

J

Inefficiency 2: resource stranding

* Try to binpack the instance into available physical machines.
» Cannot fit into either machine

Instance

Running out of memory ’ ‘® Running out of CPU
N

4 Server 0 ‘ ’ Server 1)

Py [cru. T
vern [I e [
J

- \- J

Inefficiency 2: resource stranding

* Try to binpack the instance into available physical machines.
» Cannot fit into either machine > Resource stranding

Instance

-

Running out of memory ®/ ‘® Running out of CPU
e N

4 Server 0 ‘ ’ Server 1)

CPU T
Mem
k - .

CPU

Mem

J -

Our approach: resource fungibility

»We advocate for fungible applications
* that can use resources wherever they are in the cluster.

Our approach: resource fungibility

»We advocate for fungible applications
* that can use resources wherever they are in the cluster.

_

Fungible app

CPU Mem
4 Server 1)
Mem
& L ,

4 Server 0)
cru [
ver [

11

Our approach: resource fungibility

»We advocate for fungible applications

* that can use resources wherever they are in the cluster.

4 Server 0)
cru [

vem [
_ J

(" Server 1)
M
& em - ,

12

Our approach: resource fungibility

»We advocate for fungible applications
* that can use resources wherever they are in the cluster.

4 Server 1

Mem

Our approach: resource fungibility

»We advocate for fungible applications
* that can use resources wherever they are in the cluster.

4 Server 1

Mem

Our approach: resource fungibility

»We advocate for fungible applications

* that can use resources wherever they are in the cluster.

-

Mem

Server 0

Shift usage

B N N N |
I_—-_—- -—-
-

-__I,

Resource proclet --- a new abstraction

» A resource proclet is an independent scheduling unit that consumes a
small amount of single resource.

Resource proclet --- a new abstraction

* A resource proclet is an independent scheduling unit that consumes a
small amount of single resource.

Traditional app Fungible app
H B B B B B
Instance
H B B B B E
CPU | Mem >
H B BB B B
H B B B B N

Resource proclet --- a new abstraction

* A resource proclet is an independent scheduling unit that consumes a

small amount of single resource.

Traditional app

Instance

CPU | Mem >

Fungible app

Mem proclet

w

B CPU proclet
]

18

Resource proclet --- a new abstraction

* A resource proclet is an independent scheduling unit that consumes a
small amount of single resource.

Traditional app Fungible app

IIIII/

@ B W H B CpPUproclet
H B B B B

Communication

Mem proclet

Instance
CPU | Mem >

Resource proclet --- a new abstraction

* A resource proclet is an independent scheduling unit that consumes a
small amount of single resource.

Server 0 Server 1
HERE HEEN

Resource proclet --- a new abstraction

* A resource proclet is an independent scheduling unit that consumes a
small amount of single resource.

[Server 0 J [Server 1 J
ettt bl HEEEEEEE
EEEEEEEEEEE HEEEEEEEEEE

21

Resource proclet--- a new abstraction

* A resource proclet is an independent scheduling unit that consumes a
small amount of single resource.

e e |

22

How to program with resource proclets?

How to Program with resource proc\ets?
push back(T)

/A, High-level FungibleVector<T> T operator{](size_t);

4 -\ Abstraction

How to Program with resource proc\ets?
push back(T)

/A, High-level FungibleVector<T> T operator{](size_t);

4 -\ Abstraction

Sharding
Library HNEEEEEEEEER

How to Program Wlth resource proc\ets?
push back(T)
T operator[](size_t);

2 High-level FungibleVector<T>
. .\ Abstraction
Shardi
Lizrralrr;g HEEEEEEEEEEEE
\ y)\ Y A v)\)

Resource Mem
Proclets proclets

How to Program Wlth resource proc\ets?
push back(T)
T operator[](size_t);

A High-level FungibleVector<T> forall()
.\ Abstraction
Li"“b:a':;g HEEEEEEEEEEEE
\ Y)\ Y)\ y]\)

Resource Mem
Proclets proclets

How to Program Wlth resource proc\ets?
push back(T)
T operator[](size_t);

A High-level FungibleVector<T> forall(\)
.\ Abstraction
Li""b:af;g HEEEEEEEEEEEE
\)\)\]\)
Y Y Y Y
Resource Mem

Proclets proclets .\\‘ Af/.
CPU

proclet

How to Program Wlth resource proc\ets?
push back(T)
T operator[](size_t);

A High-level FungibleVector<T> forall(\)

4 .\ Abstraction

Sharding
Library HNEEEEEEEEER

\

Resource Mem

Proclets proclets \: 7/
CPU

proclets

How to overcome communication cost?

» Problem: data locality is crucial for apps with low compute intensity.
e E.g., vector.forall(x ->x + 1).

How to overcome communication cost?

* Problem: data locality is crucial for apps with low compute intensity.
e E.g., vector.forall(x->x + 1).

T Prefetch vector

» 1. Prefetching

e Solutions:

How to overcome communication cost?

* Problem: data locality is crucial for apps with low compute intensity.
e E.g., vector.forall(x ->x + 1).

e Solutions:

Prefetch vector

\—/

e 1. Prefetching » 2. Colocation

Performance Under Imbalance

»Can we successfully combine resources to achieve fungibility?

Performance Under Imbalance

* Can we successfully combine resources to achieve fungibility?
»Built an initial prototype Quicksand; workload: image preprocessing.

Performance Under Imbalance

* Can we successfully combine resources to achieve fungibility?
»Built an initial prototype Quicksand; workload: image preprocessing.

2. Two Machines 3. Two Machines
1. Single Machine CPU-imbalanced Memory-Imbalanced
Ideal Baseline r ~ ~
cru [
P Mem [|
Mem r
CPU .
Mem I
_))

35

Performance Under Imbalance

100
- & 75
O
T 2 50
©
E
O o 25
< £
|_
0
Single CPU-
Machine Imbalanced

Memory-
Imbalanced

36

Performance Under Imbalance

100
- & 75
O
= 3 50
(0]
E
© o 25
< £
|_
0
Single CPU- Memory-
Machine Imbalanced Imbalanced

» Promising to achieve fungibility with today’s datacenter hardware!

37

Related work 1: Nu [NSDI” 23]

Nu Quicksand
Hybrid proclets + High-level abstractions
B B EE + Decoupling EEEENERN
| > EEEEEN
HE B H

38

Related work 2: HW resource disaggregation

+ Transparent

-

_

CPU pool

~

/

4 Mem pool

_

~

J

39

Related work 2: HW resource disaggregation

+ Transparent
-- Loses the control over resource placement

4 CPU pool N [Mem pool A
Il I Il B

Il I Il I N
\ expensive\)

40

Related work 3: distributed programming model

* Actor --- ServiceWeaver [HotOS’ 23], Ray [OSDI’ 18]
* Microservice --- Nightcore [ASPLOS’ 21]
e Serverless --- Boki [SOSP’ 21]

»Shared trend: applications are going granular.

Many untapped opportunities

Distributed System /\

Application Programming

Operating System

Hardware

Many untapped opportunities

Distributed System

Application Programming

Operating System

Hardware

A

» More types of resources to decouple
Future interconnect like CXL can help

Many untapped opportunities

Distributed System /\

Application Programming

Operating System » OS can provide a native support to RPs

* Mor fr r |
Hardware ore types of resources to decouple

Future interconnect like CXL can help

Many untapped opportunities

Distributed System

Application Programming

Operating System

Hardware

A

» Compiler can minimize code change

OS can provide a native support to RPs

More types of resources to decouple
Future interconnect like CXL can help

Many untapped opportunities

Distributed System /\ » Scheduler can optimize locality
Application Programming * Compiler can minimize code change
Operating System * OS can provide a native support to RPs
Hardware * More types of resources to decouple
L Future interconnect like CXL can help

Now is the time to realize resource fungibility!

AiMamMmmmamE) |AmmmEmmmmmEE)

47

