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Inefficiency 1: resource overprovisioning

»Today’s datacenters are inefficient (Borg [EuroSys’ 20], AlibabaTraca [BigData’ 17])
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* Cloud apps have varying resource consumption.
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Inefficiency 1: resource overprovisioning

* Today’s datacenters are inefficient (Borg [EuroSys’ 20], AlibabaTraca [BigData’ 17])
* Cloud apps have varying resource consumption.
» Avoid running out of resources > overprovisioning

Instance




Inefficiency 2: resource stranding

»Try to binpack the instance into available physical machines.
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Inefficiency 2: resource stranding

* Try to binpack the instance into available physical machines.
» Cannot fit into either machine
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Inefficiency 2: resource stranding

* Try to binpack the instance into available physical machines.
» Cannot fit into either machine > Resource stranding
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Our approach: resource fungibility

»We advocate for fungible applications
* that can use resources wherever they are in the cluster.
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Our approach: resource fungibility

»We advocate for fungible applications

* that can use resources wherever they are in the cluster.
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Our approach: resource fungibility

»We advocate for fungible applications

* that can use resources wherever they are in the cluster.
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Resource proclet --- a new abstraction

» A resource proclet is an independent scheduling unit that consumes a
small amount of single resource.
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* A resource proclet is an independent scheduling unit that consumes a
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Resource proclet --- a new abstraction

* A resource proclet is an independent scheduling unit that consumes a

small amount of single resource.
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Resource proclet --- a new abstraction

* A resource proclet is an independent scheduling unit that consumes a
small amount of single resource.
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Resource proclet --- a new abstraction

* A resource proclet is an independent scheduling unit that consumes a
small amount of single resource.
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Resource proclet --- a new abstraction

* A resource proclet is an independent scheduling unit that consumes a
small amount of single resource.
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Resource proclet--- a new abstraction

* A resource proclet is an independent scheduling unit that consumes a
small amount of single resource.
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How to program with resource proclets?
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How to overcome communication cost?

» Problem: data locality is crucial for apps with low compute intensity.
e E.g., vector.forall(x ->x + 1).
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How to overcome communication cost?

* Problem: data locality is crucial for apps with low compute intensity.
e E.g., vector.forall(x ->x + 1).

e Solutions:
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Performance Under Imbalance

»Can we successfully combine resources to achieve fungibility?
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Performance Under Imbalance

* Can we successfully combine resources to achieve fungibility?
»Built an initial prototype Quicksand; workload: image preprocessing.

2. Two Machines 3. Two Machines
1. Single Machine CPU-imbalanced Memory-Imbalanced
Ideal Baseline r ~ ~
cru [
P Mem [ |
Mem r
CPU .
Mem I
\_ ) )

35



Performance Under Imbalance
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Performance Under Imbalance
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» Promising to achieve fungibility with today’s datacenter hardware!
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Related work 1: Nu [NSDI” 23]
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Related work 2: HW resource disaggregation

+ Transparent
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Related work 2: HW resource disaggregation

+ Transparent
-- Loses the control over resource placement
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Related work 3: distributed programming model

* Actor --- ServiceWeaver [HotOS’ 23], Ray [OSDI’ 18]
* Microservice --- Nightcore [ASPLOS’ 21]
e Serverless --- Boki [SOSP’ 21]

»Shared trend: applications are going granular.
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Many untapped opportunities

Distributed System /\ » Scheduler can optimize locality
Application Programming * Compiler can minimize code change
Operating System * OS can provide a native support to RPs
Hardware * More types of resources to decouple
L Future interconnect like CXL can help




Now is the time to realize resource fungibility!
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