
Unleashing True Utility Computing
with Quicksand

Zain Ruan* Shihang Li ‡ Kaiyan Fan* Marcos K. Aguilera† Adam Belay*

 Seo Jin Park Malte Schwarzkopf‡

*MIT CSAIL †VMware Research ‡Brown University

1

Inefficiency 1: resource overprovisioning

2

ØToday’s datacenters are inefficient (Borg [EuroSys’ 20], AlibabaTraca [BigData’ 17])

Inefficiency 1: resource overprovisioning

• Today’s datacenters are inefficient (Borg [EuroSys’ 20], AlibabaTraca [BigData’ 17])

• Cloud apps have varying resource consump9on.

3

Time

Mem
Usage

Time

CPU
Usage

Time

IOPS
Usage

Time

Net
Usage

Inefficiency 1: resource overprovisioning

• Today’s datacenters are inefficient (Borg [EuroSys’ 20], AlibabaTraca [BigData’ 17])

• Cloud apps have varying resource consump9on.
ØAvoid running out of resources à overprovisioning

4

Time

Mem
Usage

Time

CPU
Usage

Time

IOPS
Usage

Time

Net
Usage

Wasted

Wasted
Wasted

Wasted
Wasted

Inefficiency 1: resource overprovisioning

Instance
CPU Mem

5

• Today’s datacenters are inefficient (Borg [EuroSys’ 20], AlibabaTraca [BigData’ 17])

• Cloud apps have varying resource consumption.
ØAvoid running out of resources à overprovisioning

Inefficiency 2: resource stranding

ØTry to binpack the instance into available physical machines.

CPU
Mem

Server 0 Server 1

6

CPU
Mem

Instance
CPU Mem

Inefficiency 2: resource stranding

• Try to binpack the instance into available physical machines.
ØCannot fit into either machine

7

Server 0 Server 1
CPU

Mem
CPU

Mem

Instance
CPU Mem

Running out of memory

Inefficiency 2: resource stranding

• Try to binpack the instance into available physical machines.
ØCannot fit into either machine

8

Server 0 Server 1
CPU

Mem
CPU

Mem

Instance
CPU Mem

Running out of memory Running out of CPU

Inefficiency 2: resource stranding

• Try to binpack the instance into available physical machines.
ØCannot fit into either machine à Resource stranding

9

Server 0 Server 1
CPU

Mem
CPU

Mem

Instance
CPU Mem

Running out of memory Running out of CPU

Our approach: resource fungibility

ØWe advocate for fungible applications
• that can use resources wherever they are in the cluster.

10

Our approach: resource fungibility

ØWe advocate for fungible applications
• that can use resources wherever they are in the cluster.

Fungible app
CPU Mem

11

Server 0 Server 1
CPU

Mem
CPU

Mem

Our approach: resource fungibility

ØWe advocate for fungible applications
• that can use resources wherever they are in the cluster.

12

Server 0 Server 1
CPU

Mem
CPU

Mem

Our approach: resource fungibility

ØWe advocate for fungible applications
• that can use resources wherever they are in the cluster.

13

Server 0 Server 1
CPU

Mem
CPU

Mem

Our approach: resource fungibility

ØWe advocate for fungible applications
• that can use resources wherever they are in the cluster.

14

Server 0 Server 1
CPU

Mem
CPU

Mem

Our approach: resource fungibility

ØWe advocate for fungible applica9ons
• that can use resources wherever they are in the cluster.

15

Server 0 Server 1
CPU

Mem
CPU

Mem

ShiL usage

Resource proclet --- a new abstraction

ØA resource proclet is an independent scheduling unit that consumes a
small amount of single resource.

16

Resource proclet --- a new abstraction

• A resource proclet is an independent scheduling unit that consumes a
small amount of single resource.

17

Fungible appTradi7onal app

Instance
CPU Mem

Resource proclet --- a new abstraction

• A resource proclet is an independent scheduling unit that consumes a
small amount of single resource.

18

Fungible appTradi7onal app
Mem proclet

CPU proclet
Instance

CPU Mem

Resource proclet --- a new abstraction

• A resource proclet is an independent scheduling unit that consumes a
small amount of single resource.

19

Fungible appTraditional app

Communica2on

Mem proclet

CPU proclet
Instance

CPU Mem

Resource proclet --- a new abstraction

20

• A resource proclet is an independent scheduling unit that consumes a
small amount of single resource.

Server 0 Server 1

Resource proclet --- a new abstraction

21

• A resource proclet is an independent scheduling unit that consumes a
small amount of single resource.

Server 0 Server 1

Resource proclet --- a new abstrac>on

22

• A resource proclet is an independent scheduling unit that consumes a
small amount of single resource.

Server 0 Server 1

How to program with resource proclets?

23

How to program with resource proclets?

24

push_back(T)
T operator[](size_t);FungibleVector<T>High-level

Abstraction

How to program with resource proclets?

25

FungibleVector<T>

push_back(T)
T operator[](size_t);

…

High-level
Abstraction

Sharding
Library

How to program with resource proclets?

26

push_back(T)
T operator[](size_t);

…

…

FungibleVector<T>

Mem
proclets

High-level
Abstraction

Resource
Proclets

Sharding
Library

How to program with resource proclets?

27

push_back(T)
T operator[](size_t);
Ø forall(λ)

…

…

FungibleVector<T>

Mem
proclets

High-level
Abstrac7on

Resource
Proclets

Sharding
Library

How to program with resource proclets?

28

push_back(T)
T operator[](size_t);
Ø forall(λ)

…

…

FungibleVector<T>

Mem
proclets

CPU
proclet

High-level
Abstraction

Resource
Proclets

Sharding
Library

How to program with resource proclets?

29

push_back(T)
T operator[](size_t);
Ø forall(λ)

…

…

…

FungibleVector<T>High-level
Abstraction

Resource
Proclets

Sharding
Library

CPU
proclets

Mem
proclets

How to overcome communication cost?

ØProblem: data locality is crucial for apps with low compute intensity.
• E.g., vector.forall(x -> x + 1).

30

How to overcome communication cost?

• Problem: data locality is crucial for apps with low compute intensity.
• E.g., vector.forall(x -> x + 1).

• Solu9ons:

31

Ø 1. Prefetching

Prefetch vector

How to overcome communication cost?

• Problem: data locality is crucial for apps with low compute intensity.
• E.g., vector.forall(x -> x + 1).

• Solutions:

32

• 1. Prefetching

Prefetch vector

Ø 2. Colocation

Performance Under Imbalance

ØCan we successfully combine resources to achieve fungibility?

33

Performance Under Imbalance

• Can we successfully combine resources to achieve fungibility?
ØBuilt an initial prototype Quicksand; workload: image preprocessing.

34

Performance Under Imbalance

• Can we successfully combine resources to achieve fungibility?
ØBuilt an initial prototype Quicksand; workload: image preprocessing.

35

2. Two Machines
CPU-imbalanced1. Single Machine

 Ideal Baseline

CPU

Mem

CPU

Mem

CPU

Mem

3. Two Machines
Memory-Imbalanced

CPU

Mem

CPU

Mem

Performance Under Imbalance

36

0

25

50

75

100

N
or

m
al

ize
d

Th
ro

ug
hp

ut
 (%

)

CPU-
Imbalanced

Memory-
Imbalanced

98.9% 98.1%100%

Single
Machine

Performance Under Imbalance

37

Ø Promising to achieve fungibility with today’s datacenter hardware!

0

25

50

75

100

N
or

m
al

ize
d

Th
ro

ug
hp

ut
 (%

)

CPU-
Imbalanced

Memory-
Imbalanced

98.9% 98.1%100%

Single
Machine

Related work 1: Nu [NSDI’ 23]

38

Nu Quicksand

+ Decoupling

+ High-level abstrac`onsHybrid proclets

Related work 2: HW resource disaggregation

39

Interconnect

…

+ Transparent

CPU pool Mem pool

Related work 2: HW resource disaggregation

40

CPU pool Mem pool

Interconnect

…

+ Transparent
-- Loses the control over resource placement

expensive

Related work 3: distributed programming model

41

• Actor --- ServiceWeaver [HotOS’ 23], Ray [OSDI’ 18]
• Microservice --- Nightcore [ASPLOS’ 21]
• Serverless --- Boki [SOSP’ 21]

ØShared trend: applica7ons are going granular.

Many untapped opportunities

42

Distributed System

Application Programming

Opera`ng System

Hardware

43

Distributed System

Application Programming

Operating System

Hardware ØMore types of resources to decouple

Many untapped opportuni>es

Future interconnect like CXL can help

44

Distributed System

Application Programming

Operating System

Hardware

Ø OS can provide a native support to RPs

Many untapped opportuni>es

• More types of resources to decouple
Future interconnect like CXL can help

45

Distributed System

Application Programming

Operating System

Hardware

Ø Compiler can minimize code change

Many untapped opportunities

• More types of resources to decouple
Future interconnect like CXL can help

• OS can provide a native support to RPs

46

Distributed System

Application Programming

Opera`ng System

Hardware

Ø Scheduler can optimize locality

Many untapped opportuni>es

• More types of resources to decouple
Future interconnect like CXL can help

• OS can provide a native support to RPs

• Compiler can minimize code change

Now is the *me to realize resource fungibility!

47

