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Inefficiency 1: resource overprovisioning
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ØToday’s datacenters are inefficient (Borg [EuroSys’ 20], AlibabaTraca [BigData’ 17])
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• Today’s datacenters are inefficient (Borg [EuroSys’ 20], AlibabaTraca [BigData’ 17])

• Cloud apps have varying resource consump9on.
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Inefficiency 1: resource overprovisioning

• Today’s datacenters are inefficient (Borg [EuroSys’ 20], AlibabaTraca [BigData’ 17])

• Cloud apps have varying resource consump9on.
ØAvoid running out of resources à overprovisioning
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Inefficiency 1: resource overprovisioning
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• Today’s datacenters are inefficient (Borg [EuroSys’ 20], AlibabaTraca [BigData’ 17])

• Cloud apps have varying resource consumption.
ØAvoid running out of resources à overprovisioning



Inefficiency 2: resource stranding

ØTry to binpack the instance into available physical machines.

CPU
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Inefficiency 2: resource stranding

• Try to binpack the instance into available physical machines.
ØCannot fit into either machine
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• Try to binpack the instance into available physical machines.
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Inefficiency 2: resource stranding

• Try to binpack the instance into available physical machines.
ØCannot fit into either machine à Resource stranding
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Our approach: resource fungibility

ØWe advocate for fungible applications
• that can use resources wherever they are in the cluster.
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Our approach: resource fungibility

ØWe advocate for fungible applica9ons
• that can use resources wherever they are in the cluster.

15

Server 0 Server 1
CPU

Mem
CPU

Mem

ShiL usage



Resource proclet --- a new abstraction

ØA resource proclet is an independent scheduling unit that consumes a 
small amount of single resource.
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Resource proclet --- a new abstraction

• A resource proclet is an independent scheduling unit that consumes a 
small amount of single resource.
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Resource proclet --- a new abstraction

• A resource proclet is an independent scheduling unit that consumes a 
small amount of single resource.
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Resource proclet --- a new abstraction

• A resource proclet is an independent scheduling unit that consumes a 
small amount of single resource.
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Resource proclet --- a new abstraction
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• A resource proclet is an independent scheduling unit that consumes a 
small amount of single resource.
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Resource proclet --- a new abstrac>on
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• A resource proclet is an independent scheduling unit that consumes a 
small amount of single resource.
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How to program with resource proclets?
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How to program with resource proclets?
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How to overcome communication cost?

ØProblem: data locality is crucial for apps with low compute intensity.
• E.g., vector.forall(x -> x + 1).
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How to overcome communication cost?

• Problem: data locality is crucial for apps with low compute intensity.
• E.g., vector.forall(x -> x + 1).

• Solu9ons:
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How to overcome communication cost?

• Problem: data locality is crucial for apps with low compute intensity.
• E.g., vector.forall(x -> x + 1).

• Solutions:
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• 1. Prefetching

Prefetch vector

Ø 2. Colocation



Performance Under Imbalance

ØCan we successfully combine resources to achieve fungibility?
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Performance Under Imbalance

• Can we successfully combine resources to achieve fungibility?
ØBuilt an initial prototype Quicksand; workload: image preprocessing.
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Performance Under Imbalance

• Can we successfully combine resources to achieve fungibility?
ØBuilt an initial prototype Quicksand; workload: image preprocessing.
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Performance Under Imbalance
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Performance Under Imbalance
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Ø Promising to achieve fungibility with today’s datacenter hardware!
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Related work 1: Nu [NSDI’ 23]
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Nu Quicksand

+ Decoupling

+ High-level abstrac`onsHybrid proclets



Related work 2: HW resource disaggregation
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Related work 2: HW resource disaggregation
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CPU pool Mem pool
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Related work 3: distributed programming model
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• Actor --- ServiceWeaver [HotOS’ 23], Ray [OSDI’ 18]
• Microservice --- Nightcore [ASPLOS’ 21]
• Serverless --- Boki [SOSP’ 21]

ØShared trend: applica7ons are going granular.



Many untapped opportunities
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Distributed System

Application Programming

Opera`ng System

Hardware

Ø Scheduler can optimize locality

Many untapped opportuni>es

• More types of resources to decouple
Future interconnect like CXL can help

• OS can provide a native support to RPs

• Compiler can minimize code change



Now is the *me to realize resource fungibility!
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