
Protego: Overload Control for Applications with Unpredictable Lock Contention

Inho Cho1 Ahmed Saeed2 Seo Jin Park1 Mohammad Alizadeh1 Adam Belay1

1MIT CSAIL 2Georgia Tech

Abstract
Modern datacenter applications are concurrent, so they require
synchronization to control access to shared data. Requests
can contend for different combinations of locks, depending on
application and request state. In this paper, we show that locks,
especially blocking synchronization, can squander throughput
and harm tail latency, even when the CPU is underutilized.
Moreover, the presence of a large number of contention points,
and the unpredictability in knowing which locks a request
will require, make it difficult to prevent contention through
overload control using traditional signals such as queueing
delay and CPU utilization.

We present Protego, a system that resolves these problems
with two key ideas. First, it contributes a new admission con-
trol strategy that prevents compute congestion in the presence
of lock contention. The key idea is to use marginal improve-
ments in observed throughput, rather than CPU load or latency
measurements, within a credit-based admission control algo-
rithm that regulates the rate of incoming requests to a server.
Second, it introduces a new latency-aware synchronization
abstraction called Active Synchronization Queue Manage-
ment (ASQM) that allows applications to abort requests if
delays exceed latency objectives. We apply Protego to two
real-world applications, Lucene and Memcached, and show
that it achieves up to 3.3× more goodput and 12.2× lower
99th percentile latency than the state-of-the-art overload con-
trol systems while avoiding congestion collapse.

1 Introduction
One of the key objectives of datacenter operators is to maxi-
mize the utilization of limited resources. While operating a
server close to its capacity maximizes its throughput, it also
makes it susceptible to overload due to surges in demand.
Such surges can occur due to variability in request arrival
patterns and sizes, and service failures. The resulting server
overload can cause receive livelock, where the server builds
up a long queue of requests that get starved because the server
is busy processing new packet arrivals instead of completing
pending requests [22].

The conventional solution is to use overload control to regu-
late incoming requests and shed excess load, ensuring that the
server can achieve both high utilization and low latency. Exist-
ing overload control schemes focus on CPU overload [9, 34]
or end-to-end response time [32]. However, we found these
approaches perform poorly under lock contention, especially
with blocking synchronization (e.g., mutexes) that causes a
thread to yield rather than spinning on the CPU (§2). For these
cases, contention leads to long queues of requests waiting to
acquire a critical section, increasing tail latency and wasting
CPU resources.

To better understand the challenge of managing lock con-
tention, consider a key-value store, where the key-value pairs
are grouped together based on the hashes of their keys. Access
to a bucket (i.e., a group of items with the same hash) is pro-
tected by an item lock. This means that in a key-value store,
the number of locks corresponds to the number of buckets.
However, a GET request acquires only a single lock which
synchronizes access to the bucket holding the data it’s access-
ing. As a specific piece of data becomes popular, the lock
protecting its bucket becomes highly contended, negatively
impacting the latency of all requests attempting to access that
bucket. However, it is important to note that such contention
and high delay impact some but not all of the requests the
application handles. The remainder of the requests can be
accessing different buckets incurring no contention, finishing
with minimal latency.

To maintain good performance under lock contention, one
must reduce the load on the contended lock, and thus the
latency of requests attempting to acquire it. On the other hand,
this should not be done in a way that affects the throughput of
requests not facing contention. The classic tension between
throughput and latency is exacerbated in this case due to the
unpredictability of request behavior: the locks accessed by a
request can only be known after the execution of the request
starts. Thus, the delay faced by different requests, that look
identical when admitted to the server, can be very different
depending on whether they attempt to access a contended
resource or not. This renders overload signals that consider the

request

If (condition)
datapath_1();

Else
datapath_2();

CPU mutexes work

response

1 − 𝑝𝑝

𝑝𝑝

Figure 1: A simple example application with two global mu-
texes. With a probability p, the request takes the first data path
(red arrow).

overall delay of requests ineffective. Furthermore, blocking
locks can prevent the load from saturating the CPU, rendering
CPU-based overload signals ineffective as well.

In this paper, we attempt to answer the following ques-
tion: how should an overload controller decide to admit a
request when it can’t estimate the delay the request will face?
Tackling this challenge is exacerbated by the fact that some
applications have thousands of locks. Moreover, shedding
load after processing a request requires cleaning up the state
and resources touched by that request.

We present Protego, a system that provides overload con-
trol for applications that can experience lock contention (§3).
Instead of using traditional overload control signals, it ad-
mits load as long as it observes throughput improvements.
This approach ensures high throughput for requests not ex-
periencing contention. However, it can exacerbate lock con-
tention. Thus, Protego introduces new latency-aware synchro-
nization primitives that allow applications to maintain low
latency at contended critical sections, aborting requests when
lock contention is too severe. As a result, Protego can of-
fer the right load to maximize a server’s throughput, even if
some requests must be aborted during processing. We imple-
mented Protego and compared it to SEDA and Breakwater,
two state-of-the-art overload schemes, for three applications:
Memcached, Lucene, and a synthetic application (§4). Our
evaluation demonstrates that Protego outperforms SEDA and
Breakwater for a wide range of workloads and applications
(§5). For example, when Memcached is handling a SET-heavy
workload, Protego achieves up to 1.6× more goodput with
5.7× lower 99th percentile latency compared to SEDA.

Protego has some limitations. It requires application-level
code changes to adopt our synchronization API. Furthermore,
existing overload control schemes can achieve slightly higher
throughput than Protego when locks are not the bottleneck
and requests are shorter than a microsecond.

Protego is an open-source software available at https:
//inhocho89.github.io/protego/.

2 Motivation
2.1 Locking Complicates Overload Control
In modern datacenter applications, RPC requests often re-
quire blocking synchronization (e.g., mutexes, semaphores,
and conditional variables) to serialize access to shared data.
However, blocking synchronization primitives can experience

0

1

2

3

0 1 2 3 4 5

T
hr

ou
gh

pu
t (

kR
PS

)

Total Data path 1 Data path 2

Data path 2 saturated

0

5

10

15

0 1 2 3 4 5

p9
9

L
at

en
cy

 (s
)

Offered Load (kRPS)
Figure 2: gRPC performance for the example application of
Figure 1 (p= 20%). After acquiring a mutex, requests busy-loop
for a time sampled from an exponential distribution with 1 ms
average. Four cores are allocated for this experiment, one for
each data path and two to adsorb any system overhead, ensuring
that the CPU is not bottlenecked.

contention when multiple requests attempt to access the same
critical section, leading to a performance bottleneck. This is
further complicated by the fact that the locks required by each
request may be different depending on the request payload
and the program’s state. This makes it hard to know the data
path a request will take before its actual execution.

The crux of this problem is that seemingly identical re-
quests can have different execution paths at the server with
different latency and throughput characteristics. This unpre-
dictable behavior makes admission control hard, leading to
the question: which data path should admission control con-
sider when admitting new requests? To better understand this
dilemma, consider the scenario in Figure 1. Incoming requests
can take one of two paths, each protected with a different mu-
tex. Requests can take the first data path with probability p,
where 0≤ p≤ 1, and the second path with probability 1− p.
We implemented this simple scenario in gRPC running on
Linux. Figure 2 shows the performance of this scenario with
p = 20% under various loads generated by client machines
with an open-loop Poisson arrival process.

The existence of multiple data paths with different lock
bottlenecks creates a dilemma. As shown in Figure 2, dif-
ferent datapaths are saturated at different offered load levels.
Typically, clients and servers can’t predict whether a request
will take the datapath currently bottlenecked (data path 2 in
the example). Here, the admission control dilemma emerges
from the existence of multiple desirable operating points. If
the operator desires low latency for all paths, then they have
to sacrifice throughput, admitting only enough load to sat-
urate the most congestion execution path (i.e., 1.2 kRPS in
this example). On the other hand, if they desire high through-
put, then they have to admit a high load and deal with the
congested path through other means (e.g., dropping a request

https://inhocho89.github.io/protego/
https://inhocho89.github.io/protego/

0
0.2
0.4
0.6
0.8

1

0 10 20 30 40 50

N
or

m
. T

hr
ou

gh
pu

t

Offered Load (kRPS)

SEDA Breakwater try_lock

Better

(a) Normalized Throughput

0.1

1

10

100

1000

10000

0 10 20 30 40 50

N
or

m
. p

99
 L

at
en

cy

Offered Load (kRPS)

Better

(b) Normalized 99%-ile latency

0%

20%

40%

60%

80%

100%

0 10 20 30 40 50

D
ro

p
R

at
e

Offered Load (kRPS)

(c) Drop Rate

Figure 3: Performance of Breakwater, SEDA, and trylock for the example application of Figure 1 (p = 20%) with 100 µs average service
time on Shenango. Throughput and 99th percentile latency are normalized by the performance of Protego.

after admitting it). Next, we show that no existing overload
control scheme can navigate this dilemma and produce good
results in such scenarios.

2.2 Problems with Existing Overload Control Schemes
Overload control attempts to operate a server near its capacity
with minimal SLO violations and request drops. The basic
idea behind overload control is to keep track of the load on the
server using a signal, adjusting the admitted load based on that
signal. Multiple signals have been proposed to improve the
accuracy of admission control, including CPU utilization [30],
end-to-end delay [32], and queuing delay [9,19,34]. However,
none of these signals are useful in lock contention scenarios
where the operator attempts to maximize throughput while
maintaining low latency.

For example, Breakwater [9] and Swift [19] use past obser-
vations to predict the amount of queueing delay each request
will face. However, in the presence of thousands of locks, it’s
unclear which queueing delay value (or statistic), if any, can
be used to perform admission control. This is because admis-
sion control doesn’t know in advance which locks requests
will access, making it impossible to decide which value to
react to without overestimating or underestimating overload.
Note that any CPU-based metrics also fail as the CPU might
not be the bottleneck in lock contention scenarios.

One possible approach to handle problematic or unpre-
dictable lock behavior is to leverage existing primitives like
try_lock() or timed_mutex(). Specifically, such primi-
tives will allow requests to fail, avoiding latency, if the lock
cannot be acquired due to congestion. However, overload con-
trol schemes that rely exclusively on request drops do not
scale well due to the large overhead of packet drops. Further-
more, relying on existing primitives is not straightforward;
try_lock() is a very aggressive overload control mechanism
because it causes a request to fail on the first failed attempt
to acquire a lock. On the other hand, timed_mutex() is too
relaxed, forcing a request to wait for the full waiting time
even under severe congestion conditions.

We demonstrate the limitation of existing overload control
schemes, including the usage of try_lock(), by implement-
ing those schemes for the scenario described in Figure 1,
setting the average service time to 100 µs. However, rather

than using gRPC, we leverage the existing implementation of
SEDA and Breakwater [3]. Breakwater spawns a new thread
per incoming request. We limit the number of spawned threads
to bound the memory usage of the system. When a request
is aborted, a failure message is reported to the client. The
results are shown in Figure 3, comparing the throughput, tail
latency, and drop rate of existing schemes, normalized by the
performance of Protego.

SEDA successfully bounds the tail latency as it rate-limits
clients based on the measured tail end-to-end latency. How-
ever, by considering only the tail latency, it reacts to the most
congested path, leading to poor throughput as it underutilizes
the uncongested path. Breakwater reacts only to queueing
delay in the thread queue or the packet queue, reacting only
to CPU and network overload. Thus, it doesn’t perform any
rate-limiting because neither the CPU nor the network is the
bottleneck. Breakwater’s behavior leads to high utilization
and very high latency. Using try_lock() allows the sys-
tem to achieve near-ideal latency while suffering from an
extremely high drop rate and poor throughput. This is caused
by try_lock()’s aggressiveness in dropping requests, wast-
ing CPU and throughput even at low loads. Our proposal
overcomes the shortcomings of existing systems, achieving
the highest throughput while keeping the latency and drop
rate low.

2.3 Challenges
Existing overload control schemes, developed for CPU over-
load scenarios, suffer significant performance degradation
when handling lock contention. The key issue when dealing
with lock contention is the unpredictability of the latency
that a request will face. Particularly, the overload controller
doesn’t know which lock a request will require. This issue
leads to the following challenges:
1. No existing overload control signal is viable. As discussed
earlier, delay reflects the state of the most congested path.
On the other hand, CPU utilization is not helpful when the
bottleneck is not the CPU. Thus, we need a new approach to
assessing the capacity of the server in order to make accurate
admission control decisions.
2. Drops are inevitable to achieve high throughput. An over-
load controller that doesn’t react to the most congested data

RPC Server

request
CPU

mutex

response

Th
ro

ug
hp

ut

Incoming Loadfailure
Drop Drop

Blocking Queue Management Admission control

credit Credit pool

Figure 4: Protego Overview

path will incur a high delay for requests taking that path. How-
ever, it must offer enough load to keep other, less-congested
paths busy. Therefore, maintaining both an acceptable SLO
and high CPU utilization requires dropping requests on the
most congested paths and reporting failures to the client. Early
failure reporting allows the client to issue the requests to an-
other replica while maintaining the SLO of the request.
3. Any viable solution must scale to a large number of locks.
Modern programs can have thousands of data paths and syn-
chronization primitives. An incoming request can take any of
them depending on the data it carries. Thus, the admission
control scheme needs to scale to a large number of locks with
minimal per-lock overhead.

3 System Design
There is a fundamental tradeoff between throughput and drop
rate in the presence of unpredictable synchronization. To
achieve high throughput, clients should offer enough load for
the server to fully utilize its uncontended data paths. Unfor-
tunately, this permits some congestion to occur in its con-
tended data paths. Thus, our high-level strategy is to use an
admission control scheme that admits enough load to keep
all data paths operating at full capacity, combined with an
Active Queue Management (AQM) mechanism that drops
excess load on the contended data paths. Our admission con-
trol scheme draws insight from network congestion control
algorithms like PCC [12]. Specifically, Protego does not react
to a specific overload signal. Rather, it observes the impact
of its current admission rate on the behavior of the system,
admitting more load only when it improves overall system
performance.

Figure 4 illustrates an overview of Protego combined with
a simple RPC server that uses a global mutex. Protego is com-
posed of two main components: an admission controller and
an AQM mechanism. The admission controller leverages a
credit-based scheme, similar to the scheme used in Breakwa-
ter [9]. Protego only changes the way the number of available
credits is decided, adjusting the number of credits by observ-
ing the impact of increasing the number of available credits
on achieved throughput. The AQM mechanism uses Active
Synchronization Queue Management (ASQM), a novel form
of AQM that drops requests at lock acquisition time to prevent
blocking on a critical section for an excessive amount of time.
When a request is dropped, Protego reports this failure as

quickly as possible to clients, allowing them to resend their
requests to another replica.

3.1 Performance-driven Admission Control
Our goal is to develop an admission control algorithm that
allows a server operator to navigate the tradeoff between
throughput and drop rate. Note that the admission control
algorithm should support scaling to a large number of data
paths. Thus, we avoid developing an algorithm that has to
take into account the state of every data path in the server.

Intuition. To better understand the intuition behind our
algorithm, we go back to the setup in Figure 1. Specifically,
we rerun the experiment discussed in Section 2.2. However,
we use a smaller service time per request (10 µs rather than
100 µs) because these results help to make our point clearer.
Moreover, we don’t use any admission control scheme but
rely on the AQM scheme, discussed in the next section, to
keep latency bounded. The results are shown in Figure 5. The
design of our admission control scheme stems from observing
that as the load increases, the system operates in four different
phases:

Phase I (uncongested) is the phase where none of the locks
or CPUs is congested. Throughput grows linearly with load
increases because the system has capacity to handle all incom-
ing demand. Further, tail latency increases only marginally
because of bursts in the queue caused by the variable request
arrivals, modeled as a Poisson arrival process. With no con-
gestion, AQM does not drop the requests.

Phase II (partially congested) is the phase where a subset of
locks are contended. As load increases, throughput increases
sub-linearly because the system has capacity to handle only a
fraction of incoming demand (i.e., the uncongested path still
has capacity). Incoming requests that take the congested path
will face high queueing delay, leading AQM to start dropping
requests while keeping the tail latency near the target value.
To generalize, different applications will produce a different
concave line like that shown in Figure 5(a), where the slope
of the curve decreases as more paths become congested. The
exact shape of the curve depends on the number of congested
paths, and their capacities along with the load.

Phase III (congested) is the phase where all the data paths
become congested. Thus, as the load increases, the throughput
doesn’t change. However, the increase in load increases CPU
utilization because of the increase in network processing load
and the increasing overhead of dropping requests. Eventually,
the CPU also becomes congested, increasing tail latency.

Phase IV (congestion collapse) is the phase where the system
enters a livelock state, spending more time dropping requests
than processing them. During that phase, throughput degrades
and latency keeps increasing.

Overview. Admission control should bound the incoming
load to make the server operate in Phase II. Note that the
values of latency, drop rate, and CPU utilization do not help

0

50

100

150

200

250

0 0.2 0.4 0.6 0.8 1 1.2 1.4

T
hr

ou
gh

pu
t (

kR
PS

)

Offered Load (MRPS)

I II III IV

𝒕𝒕𝒆𝒆 = 𝟏𝟏.𝟎𝟎

𝒕𝒕𝒆𝒆 = 𝟎𝟎𝒕𝒕𝒆𝒆 = 𝟎𝟎.𝟏𝟏

(a) Throughput

0

100

200

300

400

0 0.2 0.4 0.6 0.8 1 1.2 1.4

p9
9

L
at

en
cy

 (u
s)

Offered Load (MRPS)

I II III IV

Target

(b) 99%-ile latency

0%

20%

40%

60%

80%

100%

0 0.2 0.4 0.6 0.8 1 1.2 1.4

D
ro

p
R

at
e

Offered Load (MRPS)

I II III IV

(c) Drop Rate

Figure 5: Performance of the application in Figure 1 (p = 20%) with 10 µs average service with the latency bounded by ASQM

Algorithm 1 Performance-driven credit management

1: te: efficiency threshold
2: td : maximum drop threshold
3: C: the size of credit pool
4: in{last,cur}: # of incoming requests in {last, current} iteration
5: out{last,cur}: # of outgoing responses in {last, current} iteration
6: dropcur: # of request drops in current iteration
7: a: increment step size
8: d: multiplicative decrement factor
9:

10: repeat Every 4 * end-to-end RTT
11: if dropcur > td · incur then
12: C← (1−d) ·C
13: else if (incur− inlast)(outcur−outlast)> 0 then
14: if |outcur−outlast |> te · |incur− inlast | then
15: C←C+a
16: else
17: C← (1−d) ·C
18: end if
19: else
20: C← (1−d) ·C
21: end if
22: C←max(C,Cmin)
23: C←min(C,Cmax)
24: inlast ← incur
25: outlast ← outcur
26: until Application exits

identify the phase in which the server operates. However, by
observing the slope of the throughput curve, one can identify
the boundaries of Phase II. Specifically, Phase II starts when
the slope of the throughput curve drops from 1 (i.e., the system
can no longer handle all incoming requests) and ends when
the slope reaches 0 (i.e., the system can no longer handle
any additional incoming requests). A server operator that’s
interested in achieving a near-zero drop rate would operate
the server at the leftmost edge of Phase II, where the slope
of the throughput curve is slightly lower than one. On the
other hand, a server operator that’s interested in achieving the
highest possible throughput would operate the server at the
rightmost edge of Phase II, where the slope of the throughput
curve is slightly higher than zero. The server operator can

operate between those two points by choosing desired slope
value. Additionally, the operator could specify the region of
operation further by capping the maximum allowed drop rate.

We propose a performance-driven admission control al-
gorithm with two parameters: efficiency threshold (te) and
maximum drop rate (td). The efficiency threshold represents
the target operating point on the throughput curve in terms
of the slope of the curve at that point. Specifically, te takes
values between zero and one, with zero representing the high-
est possible throughput, and one representing zero drop rate.
The maximum drop rate, td , allows a service operator to cap
the drop rate at the expense of throughput to reduce the ex-
pected number of request drops. Protego uses the maximum
drop rate in addition to the efficiency threshold to determine
whether to accept more incoming load. Protego judges an
RPC server to be overloaded, accepting no further load, if
throughput improvement with additional load is less than the
efficiency threshold or if the drop rate exceeds the maximum
drop rate.

Operation. A Protego server controls the number of incom-
ing requests through the credit-based scheme we developed
for Breakwater [9]. We chose a receiver-driven credit-based
admission control scheme because it was shown to be robust
to incast scenarios, efficiently scaling to a large number of
clients while maintaining its performance [8, 9, 17, 23]. Like
1RMA [29] and Breakwater [9], Protego requires a new client
to declare its intent to send requests to the server by send-
ing an initial Request To Send (RTS) message. For Protego,
this message is needed only when a new client connects to
the server and is not needed for every request. The server
issues credits to clients. A credit represents availability at the
server to process a single request by the client that receives
the credit. A client only sends a request after it receives a
credit. A client disconnecting from the server has to send a
Disconnect message to inform the server to stop allocating
credits to it. Note that credits in Protego provide minimal
commitment as the server cannot know in advance whether
an incoming request will take a congested or an uncongested
path. Protego determines the total number of available credits,
C, before distributing them to individual clients.

The server measures its efficiency (the change in through-
put divided by the change in admitted load). If measured

efficiency is less than the efficiency threshold (te), the server
reduces the credit pool size, reducing the admitted load; other-
wise, it increases the credit pool size. In particular, the server
operates in iterations, each lasting a few end-to-end RTTs.1

We measure the end-to-end RTT with the elapsed time be-
tween credit issue and the successful response return which is
tracked with an 8B unique credit ID. The server keeps track
of the number of admitted requests from the current itera-
tion and the previous iteration, incur and inlast , respectively.
It also keeps track of the current throughput and the through-
put in the previous iteration, outcur and outlast , respectively.
The efficiency metric e = (outcur−outlast)/(incur− inlast) is
compared to the efficiency threshold te. The server contin-
uously monitors the drop count dropcur and decreases the
admitted load if dropcur exceeds td · incur. Protego uses ad-
ditive increase / multiplicative decrease (AIMD) for credit
management due to its simplicity. The details of the algorithm
are shown in Algorithm 1.

3.2 Active Synchronization Queue Management
(ASQM)

Protego assumes a standard queue abstraction per blocking
synchronization object. However, to ensure scalability, Pro-
tego requires no coordination between queues, no per-queue
parameter setting, and only minimal changes to the exist-
ing implementation of the synchronization API. Specifically,
ASQM caps the total time a request is allowed to spend in a
queue, assigning each request a queueuing delay budget. The
value of the budget represents the maximum queueing delay
a request can tolerate for the server to respond within a target
latency. The queueing delay budget is computed by subtract-
ing the 99th percentile network latency and 99th percentile
service time from the target delay of the request, leaving the
slack time that the request can afford to spend in the server.

When a request arrives at the server, Protego assigns it a
queueing delay budget. Before placing the request in each
queue for a contended resource, it first checks the instanta-
neous queueing delay of the queue and drops the request if the
queueing delay is larger than the request’s remaining queue-
ing delay budget. After the request is dequeued, it deducts
the queueing delay it incurred from its budget. The queueing
delay is measured by computing the difference between the
current timestamp and the enqueue timestamp of the oldest
item in the queue. In this paper, we only consider the runnable
thread queue in the CPU scheduler and the wait queues for
blocking synchronization primitives. However, we believe
the same idea can be applied to other queues for contended
blocking interfaces such as blocking I/O.

Target delay vs. SLO. It’s critical to note that the target delay
used to compute the queueing delay budget is different from
the RPC’s Service Level Objective (SLO). The target delay
is a per-server metric: a single server should finish a request

1We found that four RTTs allows for accurate measurement of all param-
eters while allowing for fast reaction to changes in the workload.

or report failure within the target delay. On the other hand,
an SLO is a per-request metric: a request of a specific type
should finish within its SLO, taking into account that multiple
attempts at multiple servers might be needed for the request
to succeed. In Protego, the target delay is set by default to
SLO divided by the maximum number of retries.

Handling dropped requests. Upon a request drop, the server
returns a failure message immediately to the client. At the
server, a request drop incurs some CPU overhead to partially
process the request and generate the failure message. Fur-
ther, the failure message and retransmission of the request
can incur networking overhead. If the overhead of dropping
requests is large, a service operator can reduce the drop rate
by choosing a higher value for the efficiency threshold (te),
sacrificing throughput. At the clients, the dropped request
may be handled in various ways: retransmission to another
replica, triggering failure handling operations (e.g., online
banking transaction), or degrading the quality of the response
(e.g., search). For systems with replication and auto-scaling,
retransmission is the most common failover mechanism. For
the rest of the paper, we focus on scenarios where an over-
loaded server has a non-overloaded replica which can serve
dropped requests.

Retransmission of dropped requests introduces additional
latency, inflating the overall delay faced by such requests,
potentially harming their SLOs. Protego drops requests before
they consume their delay budget. Thus, clients receive failure
messages within the target delay. In the worst case, for each
retransmission, a request will be delayed by at most the target
delay (§5.3). Alternatively, if the SLO is tight, the client can
send tied or hedged requests to multiple replicas to avoid
the retransmission delay but incur the cost of coordination
overhead and/or CPU wasted by duplicate executions [11].

3.3 System Parameters
In total, Protego has five parameters: four universal param-
eters whose value can be fixed across workloads, and one
workload-specific parameter.

Universal parameters. The efficiency threshold and maxi-
mum drop rate parameters, te and td , do not need to change
per workload. We show that the performance of Protego is not
very sensitive to the choice of te (§5.4). We use an efficiency
threshold of 10% by default. The maximum drop rate puts a
cap on the allowed drop rate. Operators that want to maximize
throughput should set it to 100%, which is the default value
we choose in the paper.

AIMD algorithms have two parameters: an increment step
size (a) and a decrement factor (d). Large values of a and d
make the algorithm more aggressive in reaching the desired
operating point but less stable with large fluctuations. We
choose small values for a and d, preferring stability. We set
a as 0.1% of the number of the client sessions and d as 2%,
which leads to good performance in incast scenarios [9].

Workload-specific parameters. The target delay specifies

the maximum delay allowed in a single server. Its value is
calculated as the SLO divided by the expected number of
attempts that a request can make before it succeeds.

4 Implementation
We implemented Protego as a library that uses Shenango [25]
and builds upon the RPC-layer implementation of Breakwa-
ter [9]. Furthermore, Protego extends Shenango’s synchro-
nization library to implement ASQM, facilitating the adoption
of Protego to Shenango applications.

Performance measurement. Protego adjusts the credit pool
size, once every iteration, based on five measures of efficiency
and drop rate: incur, outcur, dropcur, inlast and outlast . The mea-
sures are updated (i.e., current measures are reset after their
values are assigned to the last measures) after one end-to-end
RTT from the time the credit pool size is updated to accurately
reflect performance during an iteration. This period is selected
because the incoming load changes in correspondence to the
new pool size after at least one end-to-end RTT.

Dispatcher threading model. Protego assigns a queueing
delay budget per request, deducting from it after a request
is serviced from a queue. This operation requires accurately
tracking the time a request spends in various queues, avoiding
any variability that might be introduced due to the operating
system or the network stack. Thus, we implement Protego
with a dispatcher threading model where a dispatcher thread
parses the network payloads into requests, spawning a new
thread for each incoming request. This approach minimizes
the delay requests face in the network stack because packets
are parsed quickly by the dispatcher thread, out of the critical
path of request processing. When a new thread is created
by a dispatcher, it’s assigned a queueing delay budget by
subtracting the 99th percentile network latency and the 99th
percentile service time from the target delay.

Latency-aware Active Synchronization Queue Manage-
ment (ASQM) API. Protego provides the following latency-
aware APIs to enable ASQM:

bool mutex_lock_if_uncongested(mutex_t *);
bool condvar_wait_if_uncongested(condvar_t *,

mutex_t *);

These interfaces are similar to those of a try_lock(), but
their behavior is different. If the queueing delay of a blocking
critical section exceeds a request’s queueing delay budget, it
returns false without waiting. Otherwise, it returns true after
successfully acquiring the lock. An application developer
can leverage the existing synchronization API provided by
Shenango, including mutex_lock() and condvar_wait()
for parts of the program that cannot handle dropping. For
example, a maintenance thread running in the background
may need to acquire a lock no matter how long it has to wait.

Queueing delay measurement. Protego needs to measure
instantaneous queueing delay to compare it against a request’s

remaining budget. We instrument the waiter queue for mu-
texes and conditional variables to measure the queueing de-
lay.When a thread is enqueued to the waiter queue, Protego
timestamps the request. When the blocking synchronization
is queried for the queueing delay, it returns the difference be-
tween the current timestamp and the enqueue timestamp of the
oldest thread in the waiter queue. Using an efficient hardware
timestamp read function, Protego can measure the queueing
delay of blocking synchronization with little overhead.

Identifying contended locks. In order to get the full per-
formance benefits of Protego, developers must identify all
the contended locks to replace with Protego’s ASQM APIs.
A developer needs to hypothesize which locks are likely to
be contended based on the application-specific knowledge
and run experiments to verify which locks introduce a large
queueing delay with per-lock queueing delay measurements.
This process requires iterating multiple times until all the
contended locks are identified and their code is modified to
use the Protego API. Alternatively, a developer can use high-
resolution latency profilers [16] to identify contended locks.

Application modification. Enabling Protego requires replac-
ing blocking synchronization primitives with the ones pro-
vided in the Protego API. Further, Protego allows requests to
be dropped after they have been partially processed by the
server, potentially modifying some states or reserving some
resources. Thus, enabling Protego requires the application to
perform all necessary clean-up after a request is dropped (e.g.,
freeing memory it allocated to the request and releasing other
locks the request currently holds). However, the complexity
of handling request drops can be significantly reduced by uti-
lizing features of modern programming languages, such as
RAII in C++ with smart pointers and scoped locks.

5 Evaluation
Our evaluation answers the following key questions:
1. Can Protego balance high throughput and low latency for

real-world applications?
2. How much code change is required to enable Protego?
3. Does Protego maintain its benefits for different workloads?
4. Can requests maintain their SLO in the presence of drops?
5. How much does each component of Protego contribute to

its overall performance?
6. How sensitive is the performance of Protego to its parame-

ter values?
7. What are the limitations of Protego?

5.1 Evaluation Setup
Testbed: We use eleven xl170 nodes in Cloudlab [13].
Each node has a ten-core (20 hyper-threads) Intel E5-2640v4
2.4GHz CPU, 64GB ECC RAM, and a Mellanox ConnectX-4
25GbE NIC. Nodes are connected through a single Mellanox
2410 switch. The average and 99th percentile network RTT be-
tween any pair of two nodes are 10 µs and 20 µs, respectively.
We use one node as an RPC server and the other ten nodes

0

0.5

1

1.5

2

0 0.5 1 1.5 2 2.5 3

G
oo

dp
ut

 (k
R

PS
)

Clients' Demand (kRPS)

SEDA Breakwater Protego

(a) Goodput

0

200

400

600

800

1000

0 0.5 1 1.5 2 2.5 3

p9
9

L
at

en
cy

 (m
s)

Clients' Demand (kRPS)

target

(b) 99%-ile latency

0%

5%

10%

15%

20%

25%

0 0.5 1 1.5 2 2.5 3

D
ro

p
R

at
e

Clients' Demand (kRPS)

(c) Drop rate

Figure 6: Performance of SEDA, Breakwater, and Protego for Lucene

as RPC clients. The server application uses up to ten hyper-
threads for real-world applications and four hyper-threads for
synthetic application. Each client machine simulates one hun-
dred RPC client connections with sixteen dedicated, spinning
hyper-threads. Requests are generated following an open-loop
Poisson arrival process.

Workloads: We evaluate Protego using three workloads: 1)
Lucene, a search application with significant lock contention
overhead, 2) Memcached, a latency-sensitive in-memory key-
value store that exhibits both locking bottlenecks and CPU
bottlenecks, and 3) a synthetic workload with its execution
time drawn from an exponential distribution.

Baseline: We compare Protego to SEDA, a latency-based
overload control system, and Breakwater, a queueing delay-
based one. SEDA controls the load at the server by rate-
limiting the clients. Each SEDA client adjusts its request
sending rate based on the 99th percentile end-to-end latency
faced by requests. Breakwater controls the load at the server
through a credit-based mechanism, adjusting the credit pool
size based on the sum of packet queueing delay and CPU
thread queueing delay. To ensure low latency, Breakwater
drops a request if the queueing delay exceeds a workload-
based threshold.

Evaluation metrics: To incorporate throughput, latency,
and the target latency into one single metric, we compute
goodput as the throughput of the requests whose latency is
below the target delay. For Breakwater and Protego, we report
the drop rate as the ratio of the number of dropped requests
to the number of requests received by the server during an
experiment. SEDA does not drop the request at the server. We
run the experiments for 8 seconds and collect the data for the
last 4 seconds to capture the steady-state behavior.

Parameter settings: We tune the parameters of all systems
to allow each system to achieve its best goodput for each
workload. For SEDA, we adjust timeout (request sending rate
update interval), ad ji (rate increase factor), and ad jd (rate
decrease factor). We use the default configuration from [32]
for all other parameters. For Breakwater, we tune the target
queueing delay and the drop threshold which we set to 40%
and 80% of Protego’s target delay, respectively, for all work-
loads. We use the default configuration from [9] for all other

parameters. For Protego, we use an efficiency threshold (te)
of 10%, a maximum drop rate (td) of 100%, an increment step
size (a) of 1, and a decrement factor (d) of 2% for all work-
loads. We determine the queueing delay budget for ASQM
by deducting 99th percentile service time and 99th percentile
network delay (20 µs) from the target delay for each work-
load. We determine the target delay as the maximum value
between 10× the sum of average network RTT (10 µs) plus
the average service time, and 2× the sum of 99th percentile
network RTT (20 µs) plus the 99th percentile service time.
For example, for the exponential service time distribution
with 10 µs average whose 99th percentile is 46 µs, we set
the target delay to 200 µs because 10 · (10+10) = 200 µs is
higher than 2 · (20+46) = 132 µs. The way we set the target
delay is comparable to how the SLO is calculated in recent
proposals [9,10,26]. We set the SLO as twice the target delay,
assuming that a request fails at most once.

5.2 Mutex-intensive Application: Lucene
Lock contention inside Lucene: Lucene is a search engine
library that maintains two main types of structures: 1) inverted
indices, called Segments, and 2) per-term scores of all indexed
documents, called TermDocs. Every Segment and TermDocs
is protected by its own mutex. Every request performs a binary
search over all Segments to find the documents corresponding
to its search query. Then, documents are ranked based on
the information found in the TermDocs corresponding to the
identified documents.

As load increases on the server, the per-Segment lock be-
comes contended because every request needs to search over
all the Segments. Segments containing more entries are more
likely to be contended because it takes more time to perform
a binary search over their entries. Further, if a specific docu-
ment becomes popular, the per-TermDocs lock protecting its
data becomes contended.

Application modification: We ported the C++ version of
Lucene, Lucene++ [31], to Shenango and built a simple in-
memory search application, where all the data is stored in
memory with RAMDirectory. We replaced the per-Segment
lock and per-TermDocs lock with Protego’s latency-aware
synchronization API to allow request drops. In total, we mod-
ified 40 LOC of Lucene++ after porting it to Shenango. Note
that, while Lucene allows for reporting partial search results,

0

200

400

600

0 200 400 600 800

G
oo

dp
ut

 (k
R

PS
)

Clients' Demand (kRPS)

SEDA Breakwater Protego

(a) Goodput

0

200

400

600

800

0 200 400 600 800

p9
9

L
at

en
cy

 (u
s)

Clients' Demand (kRPS)

target

(b) 99%-ile latency

0%

10%

20%

30%

40%

0 200 400 600 800

D
ro

p
R

at
e

Clients' Demand (kRPS)

(c) Drop rate

Figure 7: Performance of SEDA, Breakwater, and Protego for Memcached with VAR workload

we don’t allow that to provide a fair comparison between
overload control schemes that don’t drop requests. The re-
sponse contains either the complete search result or a failure
notification.

Workload and configuration: We populate the server with
a dataset of 403,619 COVID-19-related tweets [6] in English
posted between 27th and 29th November 2021. The clients
generate single-term search queries. The search term (or word)
is sampled from the word distribution in the data set exclud-
ing stop words like “a”, “the”, “and”, etc. All the tweets are
loaded to the server before serving clients, and tweets are
not modified or deleted during an experiment. This workload
yields an average processing time of 1.7 ms and a 99th per-
centile latency of 20 ms on a lightly-loaded server. Thus, we
set the target delay to 40 ms. For SEDA, we set timeout = 1 s,
ad ji = 0.1, and ad jd = 1.3. For Protego, we use an initial
queueing delay budget of 20 ms.

Overall performance: Figure 6 shows the goodput, 99th
percentile latency, and drop rate for all three overload control
schemes. Note that Lucene does not suffer from any CPU
congestion. Thus, Breakwater’s admission control and AQM
are never triggered, leading to congestion collapse as mutexes
become congested with demand exceeding 600 RPS. SEDA
reduces clients’ request sending rate as soon as it measures
high latency due to a mutex congestion, reacting to the most
congested data path, which limits the system’s goodput to 500
RPS. SEDA’s tail latency is bounded but more than 10 times
higher than the target latency because of incast. By better
utilizing uncongested data paths and dropping the excess
load, Protego achieves up to 3.3 times higher goodput and 17
times lower 99th percentile latency than SEDA.

5.3 Latency-critical Application: Memcached
Lock contention inside Memcached: The key-value pairs
are stored in a giant hash table, composed of multiple hash
buckets. Memcached has two main types of locks that may
be contended. First, each hash bucket is protected by a mutex
called item_lock, and this mutex may get contended not only
by concurrent accesses (i.e., reads or rights) to the same key
but also by accesses on different keys sharing the same key
hash. Thus, it’s difficult to predict which item_lock a request
will need before executing it. Second, Memcached manages
its memory by assigning items memory from a global pool,

0

200

400

600

800

0 200 400 600 800

G
oo

dp
ut

 (k
R

PS
)

Server 1 Server 2 Total

0
50

100
150
200
250

0 200 400 600 800

p9
9

L
at

en
cy

 (u
s)

Clients' Demand (kRPS)

End-to-end Failure Delivery

Single server target

SLO

Figure 8: Service-level performance of Protego for the Mem-
cached VAR workload with retransmission

which is protected by a global lock called slabs_lock. Ev-
ery SET and UPDATE request must grab the slabs_lock to
allocate memory for the new value.

Application modification: We replaced the item_locks and
slabs_lock with Protego’s latency-aware mutexes. When
a request is dropped, Protego delivers a failure message to
the client immediately. Furthermore, it cleans up the inter-
mediate state processed by the request, freeing up the chunk
allocated to the request before the thread handling that request
exits. We don’t allow drop when a request tries to reacquire
slabs_lock to free up the memory to avoid memory leaks.
In total, we modified 50 LOC in Memcached [4], excluding
the modifications to port it to Shenango.

Workload and configuration: For Memcached experiments,
we use the VAR workload from Facebook Memcached clus-
ter [33]. VAR is a SET-heavy workload for server-side browser
information where 82% of the requests are SET requests. The
key distribution of the workload is skewed with 10% of the
keys used by 90% of the requests. With a SET-heavy work-
load, slabs_lock becomes the bottleneck as all SET requests
require slabs_lock to allocate memory region. We approx-
imately follow the key and value size distribution for each
workload as described in [33]. We generate 100,000 key-value
pairs and use the hash power of 17, providing 131,072 buckets
in the hash table, which is sufficient to avoid severe hash col-

0
50

100
150
200
250

0 100 200 300 400G
oo

dp
ut

 (k
R

PS
)

Clients' Demand (kRPS)

SEDA Breakwater Protego

(a) Goodput

0%
20%
40%
60%
80%

100%

0 100 200 300 400

C
PU

 U
sa

ge

Clients' Demand (kRPS)

(b) CPU usage

0
200
400
600
800

0 100 200 300 400p9
9

L
at

en
cy

 (u
s)

Clients' Demand (kRPS)

target

(c) 99%-ile latency

0%
10%
20%
30%
40%
50%

0 100 200 300 400

D
ro

p
R

at
e

Clients' Demand (kRPS)

(d) Drop rate

Figure 9: Performance of SEDA, Breakwater, and Protego for synthetic workload with p = 50% and 10 µs average service time

0

0.5

1

1.5

0 0.4 0.8 1.2 1.6 2G
oo

dp
ut

 (M
R

PS
)

Clients' Demand (MRPS)

SEDA Breakwater Protego

(a) Goodput

0%
20%
40%
60%
80%

100%

0 0.4 0.8 1.2 1.6 2

C
PU

 U
sa

ge

Clients' Demand (MRPS)

(b) CPU usage

0
100
200
300
400

0 0.4 0.8 1.2 1.6 2p9
9

L
at

en
cy

 (u
s)

Clients' Demand (MRPS)

target

(c) 99%-ile latency

0%
1%
2%
3%
4%

0 0.4 0.8 1.2 1.6 2

D
ro

p
R

at
e

Clients' Demand (MRPS)

(d) Drop rate

Figure 10: Performance of SEDA, Breakwater, and Protego for synthetic workload with p = 50% and 1 µs average service time

lisions. Since SET requests complete within less than 1 µs on
average, we set the target delay to 110 µs. For SEDA, we set
timeout to 1 ms, ad ji to 100, and ad jd to 1.02. For Protego,
we set the initial queueing delay budget to 70 µs.

Performance with a global mutex bottleneck: Figure 7
demonstrates the performance of the three overload control
schemes. When the slabs_lock becomes contended with
clients’ demand of more than 550 kRPS, both Breakwater
and SEDA experience a goodput drop because of the increase
in latency. As with Lucene, the admission control and AQM
of Breakwater are not triggered because the CPU is not con-
gested. On the other hand, SEDA suffers from incast. The
goodput of Protego increases further by utilizing uncongested
data paths with GET requests achieving 1.6 times higher good-
put than SEDA and 7 times higher goodput than Breakwater.
The increment in Protego’s goodput is limited by the over-
head of request drops. Most of the dropped requests are SET
requests, and some of them require the slabs_lock to free
the allocated memory. As more requests are dropped, the
slabs_lock becomes more contended by new SET requests
that need to allocate the memory as well as old and dropped
requests that need to release their memory, resulting in lower
throughput of SET requests at very high loads.

Maintaining the SLO under retransmissions: To better
understand the impact of request drops on the overall SLO, we
construct a simple scenario where Memcached has two repli-
cas, but we otherwise use the same configuration as before.
When a client makes a request, it sends the request to Server 1.
If it is dropped, the client then retransmits it to Server 2 (after
receiving a failure message from Server 1). This structure
is similar to how Memcached is operated at Facebook [24]
where they don’t provide a strong consistency guarantee. Note
that if both servers are overloaded, the problem ceases to be
an overload control problem as the service operator needs to

allocate more servers. Thus, our experiment captures the case
where there is sufficient capacity to handle all requests, but
retransmission may still be necessary. We anticipate up to one
retransmission could happen, considering the capacity of the
two servers and the demand the clients generate during the
experiment, so we set the service-level objective (SLO) to
two times the single server target delay, or 220 µs.

Figure 8 demonstrates the total goodput of both servers, the
99th percentile end-to-end latency, and failure message delay
for the VAR workload. When the clients’ demand exceeds
400 kRPS, Server 1 starts to drop requests. Protego drops the
requests before they wait for the contended mutex if the delay
at the mutex exceeds a request’s budget. Thus, most of the fail-
ure messages are delivered within the target delay. Note that
if a client doesn’t receive a credit for a request within 10 µs
from Server 1, it sends the request to Server 2 with the locally
generated failure message. As clients’ demand increases, the
99th percentile delay of failure messages decreases because
more requests are retransmitted to Server 2 with local fail-
ure message. The overall 99th percentile end-to-end latency
achieved by Protego is higher than the per-server target delay
because some requests need to be retransmitted. However, it
is still 1.7 × lower than the SLO.

5.4 Microbenchmark
Workload and configuration: To further analyze Protego’s
performance, we run the synthetic application depicted in
Figure 1. We choose the configuration p = 50%, making both
data paths equally likely to be congested, to provide a best-
case scenario for SEDA. We use a workload with exponential
service time distribution of 10 µs and 1 µs average. The tar-
get delay values are 200 µs and 110 µs, respectively for the
two settings. For SEDA, we set timeout = 1 ms, ad ji = 10,
and ad jd = 1.04 for the first setting, and timeout = 1 ms,
ad ji = 40, and ad jd = 1.04 for the second setting. For Pro-
tego, we set the initial queueing delay budget to 134 µs and

0
0 100 200 300 400T

hr
ou

gh
pu

t (
kR

PS
)

Clients' Demand (kRPS)

 No control AC AC + ASQM
300

200

100

(a) Throughput

0

100

200

300

0 100 200 300 400

G
oo

dp
ut

 (k
R

PS
)

Clients' Demand (kRPS)

(b) Goodput

0
200
400
600
800

0 100 200 300 400

p9
9

L
at

en
cy

 (u
s)

Clients' Demand (kRPS)

target

(c) 99%-ile latency

0%
10%
20%
30%
40%
50%

0 100 200 300 400

D
ro

p
R

at
e

Clients' Demand (kRPS)

(d) Drop rate

Figure 11: Performance of Protego by incrementally applying performance-driven admission control (AC) and ASQM with the synthetic
application with 10 µs average service time

0%

10%

20%

30%

40%

50%

0

50

100

150

200

250

1% 5% 10% 20% 50%
D

ro
p

R
at

e

G
oo

dp
ut

 (k
R

PS
)

Efficiency Threshold ()

Goodput Drop Rate

𝑡𝑡𝑒𝑒
Figure 12: Protego parameter sensitivity (efficiency threshold,
te)

85 µs, respectively, for the two settings.

Overall performance: Figure 9 shows the goodput, CPU
usage, 99th percentile latency, and drop rate for a workload
with 10 µs average service time. The performance is bottle-
necked by the mutexes, leaving the CPU underutilized even
with a high clients’ demand. Thus, at high load, the admission
control or AQM logic of Breakwater is not triggered, lead-
ing to congestion collapse. SEDA limits the sending rates of
clients as soon as it measures high tail latency with a single
temporarily congested data path. Thus, SEDA’s goodput is
limited to 168 kRPS leaving the other data path uncongested.
With a larger clients’ demand, SEDA suffers from incast be-
cause 1,000 clients are each running a control loop separately.
As a result, it shows up to three times higher tail latency than
the target delay. Protego improves goodput by up to 32% com-
pared to SEDA, maintaining latency within the target delay
by dropping up to 40% of incoming requests. Note that the
performance benefits of Protego compared to SEDA increase
as p deviates from 50%, making SEDA more conservative as
it reacts to the most congested path.

Impact of average service time: We reduce the average
service time to 1 µs, reducing the time requests can spend
with the lock, allowing the CPU to become the bottleneck.
The results are shown in Figure 10. As demand exceeds 1.1
million RPS, the CPU is saturated, triggering Breakwater
mechanisms. However, it still suffers at high loads when the
mutexes become contended. SEDA still suffers from high tail
latency up to three times of the target delay because of the
incast, but its impact on goodput is limited. Protego maintains
the tail latency lower than the target delay while dropping less
than 1% of the requests in a CPU-bounded scenario.

Performance breakdown: We measure the performance of
Protego after incrementally activating its two components: the

0
1
2
3
4

0 0.5 1 1.5 2 2.5 3 3.5G
oo

dp
ut

 (M
R

PS
)

Clients' Demand (MRPS)

SEDA Breakwater Protego

(a) Goodput

0%

1%

2%

3%

0 0.5 1 1.5 2 2.5 3 3.5

D
ro

p
R

at
e

Clients' Demand (MRPS)

(b) Drop rate

Figure 13: Performance of SEDA, Breakwater, and Protego for
Memcached with USR workload

performance-driven admission control scheme (AC) and Ac-
tive Synchronization Queue Management (ASQM). We run
the experiments with the synthetic application with p = 50%
and an average service time of 10 µs. Figure 11 shows the
throughput, the goodput, the 99th percentile latency, and drop
rate. With no overload control, goodput collapses as soon as
one of the data paths becomes congested. Enabling admission
control bounds the tail latency by limiting incoming load if
there is no throughput improvement. However, when mutexes
start to be congested, its goodput degrades with up to three
times higher tail latency than the target because one of the
mutexes can have a high queueing delay with the requests’
probabilistic data path selection. By employing ASQM, Pro-
tego ensures the tail latency does not miss the target delay by
dropping requests.

Parameter sensitivity: Protego balances goodput and drop
rate using the efficiency threshold (te). To quantify the trade-
off between them, we repeat the experiment with the synthetic
application with p = 50% and the average service time of
10 µs varying the te from 1% to 50%. Figure 12 shows the
goodput and drop rate of Protego with different te values when
the clients’ demand is 300 kRPS, around 1.4× of the capacity
(consider Figure 11 as a reference). For all values of te smaller
than 10%, the goodput and drop rate don’t change because
throughput improvements with a small te are always marginal.
With larger te values, both the goodput and drop rate decrease
as admission control targets to operate the server on the left
side of the Phase II region in Figure 5. With te = 50%, it
achieves 23% less goodput and 4 × lower drop rate than
te = 1%, allowing server operators to navigate the tradeoff
between goodput and drop rate.

5.5 Limitations of Protego
To demonstrate the limitations of Protego, we repeat the
Memcached experiment in §5.3 with the USR workload, a
GET-dominated workload for user account status information
where 99.8% of the requests are GET requests and about 20%
of the keys are used by 80% of the requests. With the USR
workload, Memcached saturates the CPU when it’s config-
ured with a high enough hash power (i.e., a large number of
buckets compared to the number of key-value pairs). However,
some item_locks can still become congested intermittently
because of the skewed key distribution. Figure 13 shows the
goodput and drop rate, comparing Protego to Breakwater and
SEDA. With clients’ demand of 3.6 million RPS, Protego
achieves 37% less goodput than SEDA and 23% less goodput
than Breakwater.

The USR workload is CPU bottlenecked, allowing Break-
water mechanisms to be triggered. Protego achieves lower
goodput than Breakwater due to the slow reaction of Protego’s
admission control. In particular, Protego changes its credit
pool size every four end-to-end RTTs. On the other hand,
Breakwater adjusts its credit pool size every network RTT. As
a result, Protego reacts to both congestion and added capacity
slowly, leading to a lower goodput. Breakwater and Protego
achieve lower goodput than SEDA because of the overhead of
credit management at the server. Specifically, SEDA doesn’t
add any extra logic at the server while Breakwater and Protego
perform all their admission control and AQM calculations at
the server. This overhead is significant when the request exe-
cution time is very small. Note that increasing the number of
clients from 1,000 to 10k can lead to performance degrada-
tion in SEDA with a larger size of incast [9]. This experiment
shows that Protego can lead to goodput degradation in some
scenarios where the CPU is bottlenecked. However, if the
setting has any significant likelihood of mutex congestion,
Protego can introduce significant benefits even when the CPU
is bottlenecked (Figure 10).

6 Discussion
Fairness. Protego does not provide any mechanisms to ensure
fairness between clients. For example, a client issuing more
requests that require contended locks will get more failure
messages because it faces a higher drop rate. However, it does
provide flexibility for clients in their selection of replicas. A
client can choose to send requests to a replica with a lower
drop rate or distribute requests to multiple replicas to lower its
drop rate. In this paper, we assume that the system as a whole
has enough capacity to handle requests, relying on elastic
resource allocation schemes like auto-scaling.

Generalizing Protego for other in-application congestion.
An evaluation of DeathStarBench [14] revealed a challeng-
ing overload scenario where the tail latency of an upstream
service (NGINX) spiked more than 10× while its CPU usage
remains low due to the blocking network socket call used in
HTTP. The delay introduced by such calls cannot be detected

with the overload signal used in DeathStarBench (i.e., CPU
Usage). Thus, the auto-scaler is never triggered to launch a
new instance, causing high tail latency. Protego can be used
to handle such overload scenarios where blocking calls (e.g.,
network or storage system calls) are the bottleneck. More
specifically, the performance-driven admission control can
back-pressure upstream services when it observes that there
is no throughput improvement as load increases due to block-
ing calls. If the invocation of blocking calls by requests is
unpredictable, it would require editing those calls to support
ASQM. Furthermore, in a multi-tier microservice architecture,
upstream microservices might be able to abstract calls made
to downstream microservices as blocking calls, allowing Pro-
tego to be used to perform overload control over the entire
microservice chain.

7 Related Work
Overload control. To avoid congestion collapse with re-
ceive live lock, an overload control system tries to bound the
incoming requests or drop the request to prevent overload.
Overload can be detected using several metrics. Breakwa-
ter [9] and DAGOR [34] use thread and network queueing
delay. SEDA [32] and ORCA [20] use response time as a con-
gestion signal. The way a system controls the overload also
differs across these systems. Breakwater utilizes credit-based
admission control with AQM. DAGOR utilizes priority-based
admission control with AQM. SEDA adjusts the request send-
ing rate at the client side. ORCA uses TCP-like window-based
approach at the client side.

Flow Control. In TCP and eRPC [18], flow control advertises
the size of the available receive buffer to clients to prevent
receiving more packets than the network stack can accom-
modate. Akka [1] Stream has a similar but more flexible
flow control mechanism where a server signals the maximum
number of requests it can handle to the clients based on the
remaining buffer size, the amount of idle resources, etc. The
clients do not send more requests than the demand signaled
by the server. Flow control is useful to avoid high latency
when the CPU is the bottleneck. However, when a blocking
synchronization becomes the bottleneck, it achieves either
low throughput by underutilizing uncongested data paths or
high latency with long queueing delay.

Measurement-based network congestion control. BBR [7]
and PCC [12] employ mechanisms similar to Protego’s
performance-driven admission control. BBR explores the
maximum network bandwidth by measuring the throughput
with increasing window size. It concludes that the network
bandwidth has reached its maximum value if it observes less
than 25% of bandwidth increase with doubled window size.
Unlike Protego, BBR does not utilize a performance-based
approach to detect network congestion but to determine a
parameter used for congestion control. In PCC, the system op-
erator defines a utility function (e.g., TCP friendliness, latency,
or throughput). PCC conducts multiple micro-experiments

with a randomized set of parameters to find the configuration
that achieves the highest utility. PCC-like algorithms require
multiple rounds to find the best configuration, which slows
down the reaction of the algorithm to the congestion. Un-
like PCC, Protego deterministically modifies the credit pool
size based on the measurement, which makes its reaction to
congestion faster.
Auto-scaling. Auto-scaling [2, 5, 15, 21, 27, 28] dynamically
changes the amount of resources allocated to a service based
on various signals including CPU usage, estimated demand,
or custom-defined signals. It ensures that a service has enough
resources to serve requests by allocating more resources when
the chosen signal indicates that a load has exceeded a con-
figurable threshold. Some auto-scalers [15, 21] let service
operators specify the signal (e.g., response time, SLO vio-
lation, cost, etc.). More recently, machine learning models
are used for auto-scaling. Facebook [5] and Google Autopi-
lot [28] auto-scale resources based on the estimated demand
learned from historical data. FIRM [27] uses system-wide
performance metrics (CPU, Memory, Disk I/O, Network us-
age, or arrival rate) to train and predict which microservices
require how much additional resources not to violate SLO.
Auto-scaling mechanisms are useful with consistent overload
over a long time scale, but it does not handle transient bursts
in a load that happen over small timescales. Such bursts can
be handled by Protego. In addition, auto-scaling alone is not
enough to achieve both high throughput and low latency in
the presence of lock contention as it does not provide any way
to drop requests in a congested data path.

8 Conclusion
In this paper, we presented Protego, an overload control sys-
tem that handles overloaded blocking synchronizations with
performance-driven admission control and Active Synchro-
nization Queue Management (ASQM). Protego’s admission
control decisions are based on measured throughput, admit-
ting more load only if it improves throughput, admitting less
load otherwise. To ensure low latency even for congested data
paths, Protego sheds load by dropping requests at contended
blocking synchronization points using ASQM. Our extensive
evaluation of Protego demonstrates that it can effectively han-
dle overload when combined with lock contention, achieving
high goodput and low latency for a wide range of conditions.
In particular, Protego achieves up to 3.3× higher goodput
with 12.2× lower 99th percentile latency than state-of-the-art
overload control schemes when applied to Lucene, a realistic
search workload.

Acknowledgments
We thank our shepherd Marios Kogias and the anonymous re-
viewers for their valuable feedback, and Cloudlab [13] for pro-
viding us with infrastructure for development and evaluation.
This work was funded in part by NSF grants CNS-2104398,
CNS-2212098, CNS-2104398, and CNS-2212099; DARPA
FastNICs (HR0011-20-C-0089); VMware and Google.

References
[1] Akka. https://akka.io/.

[2] AWS Auto Scaling. https://aws.amazon.com/
autoscaling/.

[3] Breakwater implementation on shenango. https://
inhocho89.github.io/breakwater.

[4] Memcached. http://memcached.org/.

[5] Throughput autoscaling: Dynamic sizing for
Facebook.com. https://engineering.fb.com/
2020/09/14/networking-traffic/throughput-
autoscaling/.

[6] J. M. Banda, R. Tekumalla, G. Wang, J. Yu, T. Liu,
Y. Ding, K. Artemova, E. Tutubalinа, and G. Chowell. A
large-scale COVID-19 Twitter chatter dataset for open
scientific research - an international collaboration, May
2020. https://doi.org/10.5281/zenodo.3723939.

[7] N. Cardwell, Y. Cheng, C. S. Gunn, S. H. Yeganeh,
and V. Jacobson. BBR: Congestion-based congestion
control: Measuring bottleneck bandwidth and round-trip
propagation time. Queue, 2016.

[8] I. Cho, K. Jang, and D. Han. Credit-scheduled delay-
bounded congestion control for datacenters. In SIG-
COMM, 2017.

[9] I. Cho, A. Saeed, J. Fried, S. J. Park, M. Alizadeh, and
A. Belay. Overload control for µs-scale rpcs with break-
water. In OSDI, 2020.

[10] A. Daglis, M. Sutherland, and B. Falsafi. Rpcvalet: Ni-
driven tail-aware balancing of µs-scale rpcs. In ASPLOS,
2019.

[11] J. Dean and L. A. Barroso. The tail at scale. Communi-
cations of the ACM, 2013.

[12] M. Dong, Q. Li, D. Zarchy, P. B. Godfrey, and
M. Schapira. PCC: Re-architecting congestion control
for consistent high performance. In NSDI, 2015.

[13] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig,
E. Eide, L. Stoller, M. Hibler, D. Johnson, K. Webb, et al.
The design and operation of cloudlab. In ATC, 2019.

[14] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi,
N. Katarki, A. Bruno, J. Hu, B. Ritchken, B. Jackson,
et al. An open-source benchmark suite for microservices
and their hardware-software implications for cloud &
edge systems. In ASPLOS, 2019.

[15] A. Gandhi, P. Dube, A. Karve, A. Kochut, and L. Zhang.
Adaptive, model-driven autoscaling for cloud applica-
tions. In ICAC, 2014.

https://akka.io/
https://aws.amazon.com/autoscaling/
https://aws.amazon.com/autoscaling/
https://inhocho89.github.io/breakwater
https://inhocho89.github.io/breakwater
http://memcached.org/
https://engineering.fb.com/2020/09/14/networking-traffic/throughput-autoscaling/
https://engineering.fb.com/2020/09/14/networking-traffic/throughput-autoscaling/
https://engineering.fb.com/2020/09/14/networking-traffic/throughput-autoscaling/
https://doi.org/10.5281/zenodo.3723939

[16] R. Haecki, R. N. Mysore, L. Suresh, G. Zellweger,
B. Gan, T. Merrifield, S. Banerjee, and T. Roscoe. How
to diagnose nanosecond network latencies in rich end-
host stacks. In NSDI, 2022.

[17] M. Handley, C. Raiciu, A. Agache, A. Voinescu, A. W.
Moore, G. Antichi, and M. Wójcik. Re-architecting
datacenter networks and stacks for low latency and high
performance. In SIGCOMM, 2017.

[18] A. Kalia, M. Kaminsky, and D. Andersen. Datacenter
RPCs can be general and fast. In NSDI, 2019.

[19] G. Kumar, N. Dukkipati, K. Jang, H. M. Wassel, X. Wu,
B. Montazeri, Y. Wang, K. Springborn, C. Alfeld,
M. Ryan, et al. Swift: Delay is simple and effective
for congestion control in the datacenter. In SIGCOMM,
2020.

[20] B. C. Kuszmaul, M. Frigo, J. M. Paluska, and A. S.
Sandler. Everyone loves file: File storage service (FSS)
in oracle cloud infrastructure. In ATC, 2019.

[21] M. Mao, J. Li, and M. Humphrey. Cloud auto-scaling
with deadline and budget constraints. In Grid, 2010.

[22] J. C. Mogul and K. Ramakrishnan. Eliminating receive
livelock in an interrupt-driven kernel. ACM Transac-
tions on Computer Systems, 1997.

[23] B. Montazeri, Y. Li, M. Alizadeh, and J. Ousterhout.
Homa: A receiver-driven low-latency transport protocol
using network priorities. In SIGCOMM, 2018.

[24] R. Nishtala, H. Fugal, S. Grimm, M. Kwiatkowski,
H. Lee, H. C. Li, R. McElroy, M. Paleczny, D. Peek,
P. Saab, et al. Scaling memcache at facebook. In NSDI,
2013.

[25] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and H. Bal-
akrishnan. Shenango: Achieving high CPU efficiency
for latency-sensitive datacenter workloads. In NSDI,
2019.

[26] G. Prekas, M. Kogias, and E. Bugnion. Zygos: Achiev-
ing low tail latency for microsecond-scale networked
tasks. In SOSP, 2017.

[27] H. Qiu, S. S. Banerjee, S. Jha, Z. T. Kalbarczyk, and
R. K. Iyer. FIRM: An intelligent fine-grained re-
source management framework for SLO-oriented mi-
croservices. In OSDI, 2020.

[28] K. Rzadca, P. Findeisen, J. Swiderski, P. Zych,
P. Broniek, J. Kusmierek, P. Nowak, B. Strack, P. Witu-
sowski, S. Hand, et al. Autopilot: workload autoscaling
at google. In EuroSys, 2020.

[29] A. Singhvi, A. Akella, D. Gibson, T. F. Wenisch,
M. Wong-Chan, S. Clark, M. M. Martin, M. McLaren,
P. Chandra, R. Cauble, et al. 1rma: Re-envisioning re-
mote memory access for multi-tenant datacenters. In
SIGCOMM, 2020.

[30] L. Suresh, P. Bodik, I. Menache, M. Canini, and F. Ciucu.
Distributed resource management across process bound-
aries. In SoCC, 2017.

[31] B. van Klinken. Lucene++. https://github.com/
luceneplusplus/LucenePlusPlus.

[32] M. Welsh and D. Culler. Overload management as a
fundamental service design primitive. In SIGOPS Euro-
pean Workshop, 2002.

[33] Y. Xu, E. Frachtenberg, S. Jiang, and M. Paleczny. Char-
acterizing facebook’s memcached workload. IEEE In-
ternet Computing, 2013.

[34] H. Zhou, M. Chen, Q. Lin, Y. Wang, X. She, S. Liu,
R. Gu, B. C. Ooi, and J. Yang. Overload control for
scaling wechat microservices. In SoCC, 2018.

https://github.com/luceneplusplus/LucenePlusPlus
https://github.com/luceneplusplus/LucenePlusPlus

	Introduction
	Motivation
	Locking Complicates Overload Control
	Problems with Existing Overload Control Schemes
	Challenges

	System Design
	Performance-driven Admission Control
	Active Synchronization Queue Management (ASQM)
	System Parameters

	Implementation
	Evaluation
	Evaluation Setup
	Mutex-intensive Application: Lucene
	Latency-critical Application: Memcached
	Microbenchmark
	Limitations of Protego

	Discussion
	Related Work
	Conclusion

