Nu: Achieving Microsecond-Scale Resource
Fungibility with Logical Processes

.'.

Zain Ruan"  Seolin Park™ Marcos K. Aguilera’ Adam Belay* Malte Schwarzkopfjt

*MIT CSAIL tVMware Research ¥Brown University

MIT

vmware

RESEARCH




Operational reality of today’s datacenter

* Users provision fixed-sized, coarse-grained instances.

Instance types (624) ’ (&) H Actions ¥

Q. Find resources by attribute or tag ‘ < 1 2 3 4 5 6 7 ... 13 > &}

] Instance type A \ vCPUs ¥ Architecture v Memory (GiB) V¥ ‘ Storage (GB) V¥ ] Storage type

O d3.2xlarge 8 x86_64 64 11880 hdd
O d3.4xlarge 16 x86_64 128 23760 hdd
] d3.8xlarge 32 x86_64 256 47520 hdd
O d3.xlarge 4 x86_64 32 5940 hdd

d3en.12xlarge 48 x86_64 192 335520 hdd



Operational reality of today’s datacenter

e Users provision fixed-sized, coarse-grained instances.
» Operators bin-pack instances onto the available machines.

Instance
(VM/lambda/...)

Machine



Inefficiency: resource overprovisioning

» Resource demands are often variable and hard to predict.

Instance
(VM/lambda/...)

Machine



Inefficiency: resource overprovisioning

* Resource demands are often variable and hard to predict.
» Users have to overprovision resource for peak usage.

Instance

(VM/lambda/...) < Overprovisioned

resource

Typical use

Machine 5



Can we avoid resource reservation?

Instance

Overprovisioned
(VM/lambda/...) verprovisi

resource

Typical use

Machine :



Can we avoid resource reservation?

» Benefits: enables packing more apps.

Machine



Can we avoid resource reservation?

 Benefits: enables packing more apps.
»Problem: what if apps need more resource?

A\ Resource pressure

Need more
resources

Machine



Strawman 1: kill applications

* Kill applications to make space.
* Unusable as it seriously disrupts victim’s performance.

A\ Resource pressure

Need more
resources

Machine



Strawman 2: migrate applications

»Migrate apps away from the overloaded machine.

A\ Resource pressure Need more
resources

Machine 1 Machine 2

10



Strawman 2: migrate applications

* Migrate apps away from the overloaded machine.

» Challenge: migration disrupts app’s performance.
. @ E.g., takes seconds/minutes to migrate a VM.

Need more
resources

Machine 1 Machine 2

11



Design goal: achieving resource fungibility

» Fungibility: the ability to interchangeably use resources
across machines w/o disruption.

Machine 1 Machine 2

12



Key ldea: fine-grained decomposition

Machine 1 Machine 2

13



grained decomposition

Key ldea: fine

»Decompose apps into granular units.

Machine 2

Machine 1

14



Key ldea: fine-grained decomposition

* Decompose apps into granular units.

* Upon resource pressure, rapidly migrate units.
* Only need to migrate the right amount of units.
. :___z.’ ~100 us/unit, orders of magnitude faster than migrating a VM.

Machine 1



Challenges and design overview

Challenges

Migration can disrupt Decompose apps into small
app’s performance rapidly-migratable units

16



Challenges and design overview

Migration can disrupt
app’s performance

Programming with small units
is challenging

Decomposition can increase
the communication cost

Decompose apps into small
rapidly-migratable units



Challenges and design overview

Migration can disrupt Decompose apps into small
app’s performance rapidly-migratable units
Programming with small units A familiar process-like
is challenging programming model
Decomposition can increase An efficient locality-aware

the communication cost communication runtime



The logical process abstraction

»Similar to the UNIX process, but can span across machines.

LPO Logical process 1
[ [ |

Machine O Machine 1

19



The logical process abstraction

 Similar to the UNIX process, but can span across machines.

» Consists of many smaller proclets.
* An atomic unit of states and compute.
* Can be independently migrated across machines.

Logical process 1
:‘P—? I gea’p I proclet

Machine O Machine 1

20



Proclet communication

» Proclets communicate through message passing.
* No memory sharing = avoids expensive cache coherency.



Proclet communication

* Proclets communicate through message passing.
* No memory sharing = avoids expensive cache coherency.

» Runtime offers location transparency and optimizes performance.

[ RT | | Runtime Runtime

22



Proclet communication

* Proclets communicate through message passing.
* No memory sharing = avoids expensive cache coherency.

» Runtime offers location transparency and optimizes performance.

Remote: RPC call

~

[ RT | | Runtime Runtime

23



Proclet communication

* Proclets communicate through message passing.
* No memory sharing = avoids expensive cache coherency.

» Runtime offers location transparency and optimizes performance.

Local: func call Remote: RPC call

—

[ RT | | Runtime Runtime

24



Centralized controller

* Tracks proclet locations and machine resources.

* Runtime caches location results to improve performance.

Controller

Where is proclet X?

Runtime




Proclet migration

» Runtime detects pressure and controller decides the new location.

Controller

A

HHHHH T

[ RT | | Runtime | | Runtime |




Proclet migration

* Runtime detects pressure and controller decides the new location.
» Rapidly migrate one proclet at a time.

Controller
Report Migrate to
Q pressure Node X

[ RT | | Runtime Runtime




Programming with Proclets

struct Accumulator {
std::atomic<int> val_ = 0;
void Add(int n) { val_ +=n; }
int Get() { return val; }

}s

> Proclet class definition
 Member variables are stored in proclet’s heap
* Public methods define the communication interface

28



Creating proclets

struct Accumulator {
std::atomic<int> val_ = 0;
void Add(int n) { val_ +=n; }
int Get() { return val; }

}s

auto p = make_proclet<Accumulator>();

» Proclet smart pointer (like std::shared_ptr)
* Can be passed as function arguments
e Automatic lifetime management

Accumulator:
intval=0

proclet

29



Asynchronous Call

struct Accumulator {
std::atomic<int> val_ = 0;
void Add(int n) { val_ +=n; }
int Get() { return val; }

}s

auto p = make_proclet<Accumulator>();
auto f@ = p.RunAsync(&Accumulator::Add, 1);

» Asynchronous call for latency hiding

Add

; —

Accumulator:
intval=0

thread

proclet

30



Asynchronous Call

struct Accumulator {

std::atomic<int> val_ = 0;
void Add(int n) { val_ +=n; } Add Add
int Get() { return val; } threads
}; 4/
Accumulator:
auto p = make_proclet<Accumulator>(); tval =0

auto f@ = p.RunAsync(&Accumulator::Add, 1); proclet
auto f1l = p.RunAsync(&Accumulator::Add, 1);

» Asynchronous call for latency hiding



Asynchronous Call

struct Accumulator {

std::atomic<int> val_ = 0;

void Add(int n) { val_ += n; } Add Add

int Get() { return val; } threads
}; ;;4/
auto p = make_proclet<Accumulator>(); ﬁﬁig?:guﬂ:
auto f@ = p.RunAsync(&Accumulator::Add, 1); proclet
auto f1 = p.RunAsync(&Accumulator::Add, 1);
f@.get(); fl.get();

» Asynchronous call for latency hiding



Synchronous Call

struct Accumulator {
std::atomic<int> val_ = 0;
void Add(int n) { val_ +=n; }
int Get() { return val; }

}s

auto p = make_proclet<Accumulator>();

auto 0 .RunAsync(&Accumulator::Add, 1);
auto f1 .RunAsync(&Accumulator::Add, 1);
fo.get(); fl.get();

auto val = p.Run(&Accumulator::Get); // = 2

=P
=P

» Also supports simple synchronous call

Get

§4/

Accumulator:
intval =2

thread

proclet

33



Computation shipping

struct Accumulator {
std::atomic<int> val_ = 0;
void Add(int n) { val_ +=n; }
int Get() { return val; }

}s

auto p = make_proclet<Accumulator>();

auto 0

auto f1

fo.get(); fl.get();

auto val = p.Run(&Accumulator::Get); //

val = p.Run(+[](Accumulator &a) {
a.Add(1); return a.Get(); }); // =3

» Ships a closure with very low overhead

p.RunAsync(&Accumulator::Add, 1);
p.RunAsync(&Accumulator::Add, 1);

2

Closure

§4/

Accumulator:
intval =2

thread

proclet

34



More details in the paper

* Fault tolerance and proclet replication.
* Security and threat model.

* Placement and migration policy.
* Migration and RPC optimizations.



Evaluation

 Setup: 32 machines in a rack connected with 100GbE

* Applications:
* Social network microservices (from DeathStarBench).

» Key-value store.
* Phoenix (a C++ MapReduce framework)

* Focus on answering followings:
* Can we reconcile tensions between utilization and performance?

* How fast can we migrate proclets across machines?



Able to achieve high utilization w/o disruption?

» Initially run the social network app across all 32 nodes.

37



Able to achieve high utilization w/o disruption?

e Initially run the social network app across all 32 nodes.

»Then launch the memory antagonist at one node.
 Allocates memory as fast as possible, around 7 GB/s.



Able to achieve high utilization w/o disruption?

_2x10°
(/2]
= 7 7
- >
58 2000
S 5
Ol
S 1000
D
P
[¢))
0
~ 105
&,
(]
o 00
[72]
o
£ 95
£
()
= 904 4 8 12 16 20 0 4 8 12 16 20
Time [s] Time [s]
Nu MigrOS [ATC’21]

(container live migration)

39



Able to achieve high utilization w/o disruption?

2x10°

-
-t

1\
AR}

SocialNet
.9% Latency [us]

N

o

o

o

|
|

2 1000

o

105

100

95

93_

904

Memory Usage [%]

Time [s] 12 16 20 0 4 8

Nu

Time [s] 12 16 20

MigrOS [ATC’21]

(container live migration)

40



Able to achieve high utilization w/o disruption?

2x10°

\\

A}
1\
A}

N
o
o
o

—
o
o
o

SocialNet
99.9% Latency [us]

—
o
o ©

—
o
o

- /|

90 7 ; : 7
0 /4 8 Time [s] 12 16 20 0 4 8 Time [s] 12 16 20

Nu MigrOS [ATC’21]

(container live migration)

Memory Usage [%]

Antagonist
starts

41



SocialNet

Able to achieve high utilization w/o disruption?

_2x10°
(2]
= -
g 2000
Q .
< No impact
w 1000
o I o s e
[}
(¢}

0
< 105
© Always under 100%
R 100 | == = -
(2]
)
g 95 /
é 93

90 ¢ : : 3
0 /4 8 Time [s] 12 16 20
Nu
Antagonist

starts

\\

A}

o

0

4

8

Time [s] 12

MigrOS [ATC’21]

(container live migration)

16

20

42



SocialNet

_2x10°
(2]}
= -
g 2000
Q .
S No impact
< 1000
o o et
[}
(¢}

0
< 105
@ Always under 100%
@ 100 = == == -
(2}
)
g 95 /
é 93

90 : : : 3
0 /4 8 Time [s] 12 16 20
Nu
Antagonist

Able to achieve high utilization w/o disruption?

starts

\\

Swap

8

N
o

Time Is] 12 16

MigrOS [ATC’21]

(container live migration)

43



How fast can we migrate proclets?

4096

1024

N
ul
(@)]

Migration Time (us
= (@)
o b

D

=

64

128

256

512 1024 2048 4096 8192 16384
Proclet Heap Size (KiB)

44



How fast can we migrate proclets?

4096

1024

N
ul
(@)]

Migration Time (us
= (@)
o b

D

=

64

128

40 us

256

512 1024 2048 4096 8192 16384
Proclet Heap Size (KiB)

45



How fast can we migrate proclets?

4096

1024

Migration Time (us)
(@)}
S

64 128 256 512 1024 2048 4096 8192 16384
Proclet Heap Size (KiB)

46



More results in the paper

* Other applications: KV store, Phoenix.

* React quickly to CPU pressure as well.

* Scale linearly with the number of machines.

* Match/exceed the performance of existing implementations.



Related Work

e Other migration systems.
* VM/container/process live migration: MigrOS [ATC’ 21]

e Other programming models.
* Distributed objects: Orca [OOPSLA’ 93]
» Serverless: Boki [SOSP’ 21]
» Actor: Ray [OSDI’ 18].

* Other options for fungibility.
* Resource disaggregation: LegoOS [OSDI’ 18]
* Load balancing: Slicer [OSDI’ 16]



Conclusion

» Resource overprovisioning impacts datacenter utilization.
* Nu’s logical process avoids overprovisioning through fungibility.
 Key ideas: 1) decompose apps into granular proclets.

2) rapidly migrate proclets upon pressure.
* Nu achieves high utilization without performance disruption.
 Code is available at https://github.com/Nu-NSDI23/Nu.

49


https://github.com/Nu-NSDI23/Nu

