
Nu: Achieving Microsecond-Scale Resource 
Fungibility with Logical Processes

Zain Ruan* Seo Jin Park* Marcos K. Aguilera† Adam Belay* Malte Schwarzkopf‡

*MIT CSAIL †VMware Research ‡Brown University 



Operational reality of today’s datacenter

2

• Users provision fixed-sized, coarse-grained instances.



Operational reality of today’s datacenter

3

• Users provision fixed-sized, coarse-grained instances.
ØOperators bin-pack instances onto the available machines.

Machine

Instance
(VM/lambda/…)



Inefficiency: resource overprovisioning 

4

ØResource demands are often variable and hard to predict.

Machine

Instance
(VM/lambda/…)



Inefficiency: resource overprovisioning 

5

• Resource demands are often variable and hard to predict.
ØUsers have to overprovision resource for peak usage.

Typical use

Instance
(VM/lambda/…)

Overprovisioned
resource

Machine



Can we avoid resource reservation?

6

Overprovisioned
resource

Typical use

Machine

Instance
(VM/lambda/…)



Can we avoid resource reservation?

7Machine

ØBenefits: enables packing more apps.



Can we avoid resource reservation?

8Machine

• Benefits: enables packing more apps.
ØProblem: what if apps need more resource?

Need more 
resources

Resource pressure



Strawman 1: kill applications

9Machine

• Kill applications to make space.
• Unusable as it seriously disrupts victim’s performance.

Need more 
resources

Resource pressure



Machine 2

Strawman 2: migrate applications

10

ØMigrate apps away from the overloaded machine.

Machine 1

Need more 
resources

Resource pressure



Machine 2

Strawman 2: migrate applications

11

•Migrate apps away from the overloaded machine.
ØChallenge: migration disrupts app’s performance.
• E.g., takes seconds/minutes to migrate a VM.

Machine 1

Need more 
resources



Machine 2

Design goal: achieving resource fungibility

12

ØFungibility: the ability to interchangeably use resources 
across machines w/o disruption.

Machine 1



Machine 2

Key Idea: fine-grained decomposition

13
Machine 1



Machine 2

Key Idea: fine-grained decomposition

14

ØDecompose apps into granular units.

Machine 1



Machine 2

Key Idea: fine-grained decomposition

15

• Decompose apps into granular units.
• Upon resource pressure, rapidly migrate units.
• Only need to migrate the right amount of units.
• ~100 μs/unit, orders of magnitude faster than migrating a VM.

Machine 1



Challenges and design overview

16

Challenges Nu’s Design

Migration can disrupt 
app’s performance

Decompose apps into small 
rapidly-migratable units



Challenges and design overview

17

Challenges Nu’s Design

Migration can disrupt 
app’s performance

Decompose apps into small 
rapidly-migratable units

Programming with small units 
is challenging

Decomposition can increase 
the communication cost



Challenges and design overview

18

Challenges Nu’s Design

Migration can disrupt 
app’s performance

Decompose apps into small 
rapidly-migratable units

Programming with small units 
is challenging

A familiar process-like 
programming model

Decomposition can increase 
the communication cost

An efficient locality-aware 
communication runtime 



The logical process abstraction

19

ØSimilar to the UNIX process, but can span across machines. 

Machine 0 Machine 1

LP 0 Logical process 1



The logical process abstraction

20

• Similar to the UNIX process, but can span across machines. 
ØConsists of many smaller proclets.

• An atomic unit of states and compute.
• Can be independently migrated across machines.

Machine 0 Machine 1

LP 0 Logical process 1
proclet



Proclet communication

ØProclets communicate through message passing.
• No memory sharing à avoids expensive cache coherency.

21



Proclet communication

• Proclets communicate through message passing.
• No memory sharing à avoids expensive cache coherency.

ØRuntime offers location transparency and optimizes performance. 

22

RT Runtime Runtime



Proclet communication

• Proclets communicate through message passing.
• No memory sharing à avoids expensive cache coherency. 

ØRuntime offers location transparency and optimizes performance. 

23

RT Runtime Runtime

Remote: RPC call 



Proclet communication

• Proclets communicate through message passing.
• No memory sharing à avoids expensive cache coherency. 

ØRuntime offers location transparency and optimizes performance. 

24

RT Runtime Runtime

Local: func call Remote: RPC call 



Centralized controller

• Tracks proclet locations and machine resources.
• Runtime caches location results to improve performance.

25

RT Runtime Runtime

Controller

Where is proclet X? 



Proclet migration

ØRuntime detects pressure and controller decides the new location.

26

RT Runtime Runtime

Controller



Proclet migration

• Runtime detects pressure and controller decides the new location.
ØRapidly migrate one proclet at a time.

27

RT Runtime Runtime

Report 
pressure

Migrate to 
Node X

Controller



Programming with Proclets

struct Accumulator {
std::atomic<int> val_ = 0;
void Add(int n) { val_ += n; }
int Get() { return val; }

};

Ø Proclet class definition
• Member variables are stored in proclet’s heap
• Public methods define the communication interface

28



Creating proclets

Accumulator:
int val = 0 proclet

struct Accumulator {
std::atomic<int> val_ = 0;
void Add(int n) { val_ += n; }
int Get() { return val; }

};

auto p = make_proclet<Accumulator>();

29

Ø Proclet smart pointer (like std::shared_ptr)
• Can be passed as function arguments
• Automatic lifetime management



Asynchronous Call

struct Accumulator {
std::atomic<int> val_ = 0;
void Add(int n) { val_ += n; }
int Get() { return val; }

};

auto p = make_proclet<Accumulator>();
auto f0 = p.RunAsync(&Accumulator::Add, 1);

Accumulator:
int val = 0 proclet

thread

30

Ø Asynchronous call for latency hiding

Add



Asynchronous Call

struct Accumulator {
std::atomic<int> val_ = 0;
void Add(int n) { val_ += n; }
int Get() { return val; }

};

auto p = make_proclet<Accumulator>();
auto f0 = p.RunAsync(&Accumulator::Add, 1);
auto f1 = p.RunAsync(&Accumulator::Add, 1);

Accumulator:
int val = 0 proclet

threads

31

Ø Asynchronous call for latency hiding

Add Add



Asynchronous Call

struct Accumulator {
std::atomic<int> val_ = 0;
void Add(int n) { val_ += n; }
int Get() { return val; }

};

auto p = make_proclet<Accumulator>();
auto f0 = p.RunAsync(&Accumulator::Add, 1);
auto f1 = p.RunAsync(&Accumulator::Add, 1);
f0.get(); f1.get();

Accumulator:
int val = 2 proclet

threads

32

Ø Asynchronous call for latency hiding

Add Add



Synchronous Call

struct Accumulator {
std::atomic<int> val_ = 0;
void Add(int n) { val_ += n; }
int Get() { return val; }

};

auto p = make_proclet<Accumulator>();
auto f0 = p.RunAsync(&Accumulator::Add, 1);
auto f1 = p.RunAsync(&Accumulator::Add, 1);
f0.get(); f1.get();
auto val = p.Run(&Accumulator::Get); // = 2

Accumulator:
int val = 2 proclet

thread

33

Ø Also supports simple synchronous call

Get



Computation shipping

struct Accumulator {
std::atomic<int> val_ = 0;
void Add(int n) { val_ += n; }
int Get() { return val; }

};

auto p = make_proclet<Accumulator>();
auto f0 = p.RunAsync(&Accumulator::Add, 1);
auto f1 = p.RunAsync(&Accumulator::Add, 1);
f0.get(); f1.get();
auto val = p.Run(&Accumulator::Get); // = 2
val = p.Run(+[](Accumulator &a) {
a.Add(1); return a.Get(); }); // = 3

Accumulator:
int val = 2 proclet

thread

34Ø Ships a closure with very low overhead

Closure



More details in the paper

• Fault tolerance and proclet replication.
• Security and threat model.
• Placement and migration policy.
• Migration and RPC optimizations.

35



Evaluation

• Setup: 32 machines in a rack connected with 100GbE
• Applications:
• Social network microservices (from DeathStarBench).
• Key-value store.
• Phoenix (a C++ MapReduce framework)

• Focus on answering followings:
• Can we reconcile tensions between utilization and performance?
• How fast can we migrate proclets across machines?

36



37

Able to achieve high utilization w/o disruption?

ØInitially run the social network app across all 32 nodes.

…



38

Able to achieve high utilization w/o disruption?

…

• Initially run the social network app across all 32 nodes.
ØThen launch the memory antagonist at one node.
• Allocates memory as fast as possible, around 7 GB/s.



Able to achieve high utilization w/o disruption?

39

Nu MigrOS [ATC’21]
(container live migration)



Able to achieve high utilization w/o disruption?

40

93

Nu MigrOS [ATC’21]
(container live migration)



Able to achieve high utilization w/o disruption?

41

Antagonist 
starts

93

MigrOS [ATC’21]
(container live migration)

Nu



Able to achieve high utilization w/o disruption?

42

93

Nu MigrOS [ATC’21]
(container live migration)

No impact

Always under 100%

Antagonist 
starts



Able to achieve high utilization w/o disruption?

43

No impact

322X

Swap

93

Nu MigrOS [ATC’21]
(container live migration)Antagonist 

starts

Always under 100%



1

4

16

64

256

1024

4096

64 128 256 512 1024 2048 4096 8192 16384

M
ig

ra
tio

n 
Ti

m
e 

(u
s)

Proclet Heap Size (KiB)

How fast can we migrate proclets?

44



1

4

16

64

256

1024

4096

64 128 256 512 1024 2048 4096 8192 16384

M
ig

ra
tio

n 
Ti

m
e 

(u
s)

Proclet Heap Size (KiB)

How fast can we migrate proclets?

45

40 us



1

4

16

64

256

1024

4096

64 128 256 512 1024 2048 4096 8192 16384

M
ig

ra
tio

n 
Ti

m
e 

(u
s)

Proclet Heap Size (KiB)

How fast can we migrate proclets?

11 GB/s 

40 us

46

Saturate line rate



More results in the paper

• Other applications: KV store, Phoenix.
• React quickly to CPU pressure as well.
• Scale linearly with the number of machines.
• Match/exceed the performance of existing implementations.

47



Related Work

• Other migration systems. 
• VM/container/process live migration: MigrOS [ATC’ 21]

• Other programming models.
• Distributed objects: Orca [OOPSLA’ 93]
• Serverless: Boki [SOSP’ 21]
• Actor: Ray [OSDI’ 18].

• Other options for fungibility.
• Resource disaggregation: LegoOS [OSDI’ 18]
• Load balancing: Slicer [OSDI’ 16]

48



Conclusion

• Resource overprovisioning impacts datacenter utilization.
• Nu’s logical process avoids overprovisioning through fungibility.
• Key ideas: 1) decompose apps into granular proclets.

2) rapidly migrate proclets upon pressure.
• Nu achieves high utilization without performance disruption.
• Code is available at https://github.com/Nu-NSDI23/Nu.

49

https://github.com/Nu-NSDI23/Nu

