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Operational reality of today’s datacenter
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• Users provision fixed-sized, coarse-grained instances.
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• Users provision fixed-sized, coarse-grained instances.
ØOperators bin-pack instances onto the available machines.
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Inefficiency: resource overprovisioning 
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Inefficiency: resource overprovisioning 
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• Resource demands are often variable and hard to predict.
ØUsers have to overprovision resource for peak usage.
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Can we avoid resource reservation?
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Can we avoid resource reservation?
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ØBenefits: enables packing more apps.



Can we avoid resource reservation?
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• Benefits: enables packing more apps.
ØProblem: what if apps need more resource?

Need more 
resources

Resource pressure



Strawman 1: kill applications
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• Kill applications to make space.
• Unusable as it seriously disrupts victim’s performance.

Need more 
resources

Resource pressure



Machine 2

Strawman 2: migrate applications
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ØMigrate apps away from the overloaded machine.
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Strawman 2: migrate applications
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•Migrate apps away from the overloaded machine.
ØChallenge: migration disrupts app’s performance.
• E.g., takes seconds/minutes to migrate a VM.

Machine 1

Need more 
resources
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Design goal: achieving resource fungibility
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ØFungibility: the ability to interchangeably use resources 
across machines w/o disruption.

Machine 1
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Key Idea: fine-grained decomposition
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Key Idea: fine-grained decomposition
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ØDecompose apps into granular units.

Machine 1
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Key Idea: fine-grained decomposition
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• Decompose apps into granular units.
• Upon resource pressure, rapidly migrate units.
• Only need to migrate the right amount of units.
• ~100 μs/unit, orders of magnitude faster than migrating a VM.

Machine 1



Challenges and design overview
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Challenges Nu’s Design

Migration can disrupt 
app’s performance

Decompose apps into small 
rapidly-migratable units
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Challenges and design overview
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Challenges Nu’s Design

Migration can disrupt 
app’s performance

Decompose apps into small 
rapidly-migratable units

Programming with small units 
is challenging

A familiar process-like 
programming model

Decomposition can increase 
the communication cost

An efficient locality-aware 
communication runtime 



The logical process abstraction
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ØSimilar to the UNIX process, but can span across machines. 
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The logical process abstraction
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• Similar to the UNIX process, but can span across machines. 
ØConsists of many smaller proclets.

• An atomic unit of states and compute.
• Can be independently migrated across machines.

Machine 0 Machine 1

LP 0 Logical process 1
proclet



Proclet communication

ØProclets communicate through message passing.
• No memory sharing à avoids expensive cache coherency.
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Proclet communication

• Proclets communicate through message passing.
• No memory sharing à avoids expensive cache coherency.

ØRuntime offers location transparency and optimizes performance. 
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• No memory sharing à avoids expensive cache coherency. 
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RT Runtime Runtime

Remote: RPC call 



Proclet communication

• Proclets communicate through message passing.
• No memory sharing à avoids expensive cache coherency. 

ØRuntime offers location transparency and optimizes performance. 
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RT Runtime Runtime

Local: func call Remote: RPC call 



Centralized controller

• Tracks proclet locations and machine resources.
• Runtime caches location results to improve performance.
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RT Runtime Runtime

Controller

Where is proclet X? 



Proclet migration

ØRuntime detects pressure and controller decides the new location.
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Proclet migration

• Runtime detects pressure and controller decides the new location.
ØRapidly migrate one proclet at a time.
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RT Runtime Runtime
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Programming with Proclets

struct Accumulator {
std::atomic<int> val_ = 0;
void Add(int n) { val_ += n; }
int Get() { return val; }

};

Ø Proclet class definition
• Member variables are stored in proclet’s heap
• Public methods define the communication interface
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Creating proclets

Accumulator:
int val = 0 proclet

struct Accumulator {
std::atomic<int> val_ = 0;
void Add(int n) { val_ += n; }
int Get() { return val; }

};

auto p = make_proclet<Accumulator>();
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Ø Proclet smart pointer (like std::shared_ptr)
• Can be passed as function arguments
• Automatic lifetime management



Asynchronous Call

struct Accumulator {
std::atomic<int> val_ = 0;
void Add(int n) { val_ += n; }
int Get() { return val; }

};

auto p = make_proclet<Accumulator>();
auto f0 = p.RunAsync(&Accumulator::Add, 1);

Accumulator:
int val = 0 proclet

thread

30

Ø Asynchronous call for latency hiding

Add



Asynchronous Call

struct Accumulator {
std::atomic<int> val_ = 0;
void Add(int n) { val_ += n; }
int Get() { return val; }

};

auto p = make_proclet<Accumulator>();
auto f0 = p.RunAsync(&Accumulator::Add, 1);
auto f1 = p.RunAsync(&Accumulator::Add, 1);

Accumulator:
int val = 0 proclet

threads
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Ø Asynchronous call for latency hiding

Add Add



Asynchronous Call

struct Accumulator {
std::atomic<int> val_ = 0;
void Add(int n) { val_ += n; }
int Get() { return val; }

};

auto p = make_proclet<Accumulator>();
auto f0 = p.RunAsync(&Accumulator::Add, 1);
auto f1 = p.RunAsync(&Accumulator::Add, 1);
f0.get(); f1.get();

Accumulator:
int val = 2 proclet

threads
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Ø Asynchronous call for latency hiding

Add Add



Synchronous Call

struct Accumulator {
std::atomic<int> val_ = 0;
void Add(int n) { val_ += n; }
int Get() { return val; }

};

auto p = make_proclet<Accumulator>();
auto f0 = p.RunAsync(&Accumulator::Add, 1);
auto f1 = p.RunAsync(&Accumulator::Add, 1);
f0.get(); f1.get();
auto val = p.Run(&Accumulator::Get); // = 2

Accumulator:
int val = 2 proclet

thread
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Ø Also supports simple synchronous call

Get



Computation shipping

struct Accumulator {
std::atomic<int> val_ = 0;
void Add(int n) { val_ += n; }
int Get() { return val; }

};

auto p = make_proclet<Accumulator>();
auto f0 = p.RunAsync(&Accumulator::Add, 1);
auto f1 = p.RunAsync(&Accumulator::Add, 1);
f0.get(); f1.get();
auto val = p.Run(&Accumulator::Get); // = 2
val = p.Run(+[](Accumulator &a) {
a.Add(1); return a.Get(); }); // = 3

Accumulator:
int val = 2 proclet

thread

34Ø Ships a closure with very low overhead

Closure



More details in the paper

• Fault tolerance and proclet replication.
• Security and threat model.
• Placement and migration policy.
• Migration and RPC optimizations.
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Evaluation

• Setup: 32 machines in a rack connected with 100GbE
• Applications:
• Social network microservices (from DeathStarBench).
• Key-value store.
• Phoenix (a C++ MapReduce framework)

• Focus on answering followings:
• Can we reconcile tensions between utilization and performance?
• How fast can we migrate proclets across machines?
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Able to achieve high utilization w/o disruption?

ØInitially run the social network app across all 32 nodes.

…
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Able to achieve high utilization w/o disruption?

…

• Initially run the social network app across all 32 nodes.
ØThen launch the memory antagonist at one node.
• Allocates memory as fast as possible, around 7 GB/s.



Able to achieve high utilization w/o disruption?
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Able to achieve high utilization w/o disruption?
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Antagonist 
starts

93

MigrOS [ATC’21]
(container live migration)

Nu



Able to achieve high utilization w/o disruption?
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Able to achieve high utilization w/o disruption?
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No impact

322X

Swap

93

Nu MigrOS [ATC’21]
(container live migration)Antagonist 

starts

Always under 100%
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More results in the paper

• Other applications: KV store, Phoenix.
• React quickly to CPU pressure as well.
• Scale linearly with the number of machines.
• Match/exceed the performance of existing implementations.

47



Related Work

• Other migration systems. 
• VM/container/process live migration: MigrOS [ATC’ 21]

• Other programming models.
• Distributed objects: Orca [OOPSLA’ 93]
• Serverless: Boki [SOSP’ 21]
• Actor: Ray [OSDI’ 18].

• Other options for fungibility.
• Resource disaggregation: LegoOS [OSDI’ 18]
• Load balancing: Slicer [OSDI’ 16]
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Conclusion

• Resource overprovisioning impacts datacenter utilization.
• Nu’s logical process avoids overprovisioning through fungibility.
• Key ideas: 1) decompose apps into granular proclets.

2) rapidly migrate proclets upon pressure.
• Nu achieves high utilization without performance disruption.
• Code is available at https://github.com/Nu-NSDI23/Nu.
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https://github.com/Nu-NSDI23/Nu

