Harvesting Idle Memory for Application-
Managed Soft State with Midas

Yifan Qiao, Zhenyuan Ruan, Haoran Ma
Adam Belay, Miryung Kim, Harry Xu

Soft State Is Everywhere

Increases performance but safe to discard

Examples:
(@
!
f")
Memcached
\ ‘ _J
CEES
\ W W W
Cache

00

Return results directly if
fib(n) has been calculated.
@memoize
def fib(n):
if n < 2:
return n
else:
return fib(n-1) + fib(n-2)

Memoization

A

Soft State Is Everywhere

Application: need Q

L5

Z Construct

Get Miss
Put

)% O

Soft State Store

Soft State Is Everywhere

Application: need
\ Get cached value

% Trade memory for performance

Soft State Store % Perfect use case for idle memory

4

Managing Soft State Is Hard

How to improve performance of UCollectionView containing lots of small
images?

Asked 8 years, 7 months ago Modified 8 years, 7 months ago Viewed 3k times O Part of Mobile Development Collective

In my iOS app | have UICollectionView that displays around 1200 small (35x35 points)

a
images. The images are stored in application bundle.
17 . - .
| am correctly reusing UICollectionViewCell s but still have performance problems that vary
v depending on how | address image loading:

e My app is application extension and those have limited memory (40 MB in this case).
Putting all 1200 images to Assets catalog and loading them using UIImage(named:
"imageName") resulted in memory crashes - system cached images which filled up the
memory. At some point the app needs to allocate bigger portions of memory but these
were not available because of cached images. Instead of triggering memory warning and
cleaning the cache, operating system just killed the app.

| changed the approach to avoid images caching. | put images to my project (not to asssets
catalog) as png files and | am loading them using
NSBundle.mainBundle().pathForResource("imageName", ofType: "png") now. The app
no longer crashes due to memory error but loading of single image takes much longer and
fast scrolling is lagging even on the newest iPhones.

Managing Soft State Is Hard

How to improve performance of UCollectionView containing lots of small
images?

How to speed up a Ul application that loads many images?

Option 1: Storing All Soft State

Ul Application

Available Memory

Cache

Option 1: Storing All Soft State

Ul Application

Image Cache

Option 1: Storing All Soft State

Ul feation A Out-of-memory error!

T~

\‘
[A] [A] [A] [Ay] [Ay] [As] (]

Image Cache

Option 2: Statically Limiting Cache Size

Ul Application

/—/ Reserve

o

Available Memory

Image Cache

< ><

Small static size Left on the table

>

10

Option 3: Leveraging OS Page Cache

Ul Application

*g

Page Cache = = | =

Available Memory

& OS Kernel

disk blocks

., Limited to cache

11

Design Goals

Option 1: storing all soft state

Option 2: static limit on cache size

Option 3: OS kernel page cache

12

Design Goals

\ Responding to memory pressure
\ Taking full advantage of available memory
\ Democratizing what can be stored

Can we have a new virtual memory abstraction for soft state?

13

Midas: A Soft Memory Abstraction

(1) Offer the illusion of an unlimited cache space

Ul Application

I

--------------- P —

Kernel

Unlimited space for soft state

Midas: A Soft Memory Abstraction

(1) Offer the illusion of an unlimited cache space

Ul Application

--------------- P L —

Kernel

Available Memory (pages)

,\2:\/ OS Kernel

(2) Rapidly unmap memory pages to avoid running out of memory

Midas: A Soft Memory Abstraction

(1) Offer the illusion of an unlimited cache space

Ul Application
. 3
(3) Transparently access lost soft state by reconstruction
User I v ey
——————————————— [A] 7 P 000 -
Kernel ' - B
Available Memory (pages) i

_1 ________ !

,\2:\/ OS Kernel

(2) Rapidly unmap memory pages to avoid running out of memory

Midas: A Soft Memory Abstraction

How to access soft memory?

--------------- B eee o
Kernel : - B
Available Memory (pages) i
D N —— |

How to reclaim soft memory?

How to Access Soft Memory?

Soft memory pointers

» Similar to smart pointers

Soft memory pool

* Allocator

Application
1 1 Dereference
Pointer | Pointer
oft Memory Pool

O

18

How to Access Soft Memory?

Soft memory pointers

Soft memory pool

Similar to smart pointers

Allocator

Exist

Application

1 1

Dereference

Pointer | Pointer

[/

oft

Memory Pool

{ = Not exist

19

How to Access Soft Memory?

Soft memory pointers

Soft memory pool

Similar to smart pointers

Allocator

Exist

Application

1 Access directly

Pointer | Pointer

[/

oft Memory Pool

20

How to Access Soft Memory?

Soft memory pointers
» Similar to smart pointers

» Transparent reconstruction

Soft memory pool

* Allocator

Application

1 Access by reconstruction

Pointer | Pointer

[/

oft Memory Pool

{ J*— Not exist

21

How to Transparently Reconstruct Soft State?

Application

Soft memory pointers

» Similar to smart pointers

Pointer | Pointer

» Transparent reconstruction /

4)
Soft memory pool ft Memory Pool
- Allocator S, reconstructor

> Initialized with reconstruction

logic

How to Reclaim Soft Memory?

Application

Soft Pointers
Which soft state to evict? Runtime

ﬁ l Cooperative reclamation

e OO O OO0 eee -

Available Memory (limited)

& OS Kernel -

Runtime Memory Management

Log-structured allocator

» Organize soft memory as segments

—> 000

Application
Soft Pointers
Runtime
Segment Segment Segment
Pages Pages Pages

& OS Kernel

24

Runtime Memory Management

Log-structured allocator
* Organize soft memory as segments

» Track access frequency (hotness)

Application

Soft Pointers

Runtime

hot

cold dead

o0

o V%

—> 000

Pages

25

Runtime Memory Management

Application

Soft Pointers
Log-structured allocator Runtime

» Organize soft memory as segments _
C Compact and segregate hot/cold/dead objects

» Track access frequency (hotness)

Concurrent evacuator QQ QQ @ | > eee

» Continuously compact objects Pages Pages Pages

& OS Kernel

Runtime Memory Management

Log-structured allocator

» Organize soft memory as segments
» Track access frequency (hotness)
Concurrent evacuator

» Continuously compact objects

Free segment Cold segment

Application

Soft Pointers

Runtime

Hot segment

00

@0

—> 000

Pages

Pages

Pages

& OS Kernel

27

Runtime Cooperative Reclamation

The OS kernel coordinates with the
runtime to reclaim memory

Revoke memory

Memory pressure A

Application

Soft Pointers

Runtime

1 Release segment

OOnooO

—> 000

Pages

Pages

Pages

& OS Kernel

28

Runtime Cooperative Reclamation

The OS kernel coordinates with the -
runtime to reclaim memory Application

Soft Pointers

Runtime
1Release segment
P ;
Revoke memory :r_’ Q Q Q Q oo
Pages Pages

Memory pressure A

Runtime Cooperative Reclamation

The OS kernel coordinates with the
runtime to reclaim memory

Revoke memory

Memory pressure A

Application

Soft Pointers

Runtime

1 Release segment

,,,,, o~ 1
s NS AN 1

{ Vol -

v [1

1 N, / AN / 1
See? See” I

—> 000

Pages

30

Runtime Cooperative Reclamation

The OS kernel coordinates with the
runtime to reclaim memory

Memory pressure @

Application

Soft Pointers

Runtime
Update stale pointers

- HOO

—> 000

Pages

31

Runtime Cooperative Reclamation

The OS kernel coordinates with the
runtime to reclaim memory

What if the runtime fails to
release memory timely?

Severe memory pressure A

Application

Soft Pointers
Runtime

a

OO0

OOHO

—> 000

Pages

Pages Pages

& OS Kernel

32

Kernel Enforced Reclamation

The OS kernel unmaps pages directly -
Application

Soft Pointers
Runtime

Z Fail to release memory timely

OOMOOHO |

Pages Pages Pages

Unmap directly

Severe memory pressure A & OS Kernel ‘

Kernel Enforced Reclamation

The OS kernel unmaps pages directly

Application

Soft Pointers

Runtime

Z Fail to release memory timely

OOHO

—> 000

Pages Pages

Severe memory pressure @ ‘

& OS Kernel

34

Kernel Enforced Reclamation

The OS kernel unmaps pages directly

How to protect the application
from segmentation faults?

Application

Pointer

Soft Pointers

|

Runtime

Segmentation fault!

OOHO

—> 000

Pages Pages

& OS Kernel

35

How to Protect the Application From Segfaults?

Fault free Application

———————————————————————————— $ Access by copying - == ===== === —-
(1) Fault-guarded soft pointer interface Pointer | Soft Pointers

* Hide raw references / Runtime

* Return values by copying zk

]
'''''' . P |
NS \'

)t g > o000
VRN A1
\N__’/ I

---------- Pages Pages

& OS Kernel 36

How to Protect the Application From Segfaults?

Fault free Application

———————————————————————————— $ Access by copying - == ===== === —-

(1) Fault-guarded soft pointer interface Pointer | Soft Pointers

» Hide raw references Runtime

+ Return values by copying t ’ Capture signal & recover

(2) Fault-resilient runtime i/ N Q Q Q eee
» Safely handle memory faults T Pages Pages

& OS Kernel 37

Midas in Practice

Runtime

38

How much memory should we grant to each application?

How to Coordinate Soft Memory Between Apps?

— l —_— | — | —
Application 1 | 1| Application2 [il Application 3 |: i| Application 4

g | |

Runtime i i i i i i

g | |

Soft Memory ! i i i I i

Available Memory ; | L1 o
__________________________ 3 ST ——==——==. Jao————==i—————==d lao==——=—————————-
Most sensitive Least sensitive

& Global Coordinator

@ Probe performance sensitivity 39

How to Coordinate Soft Memory Between Apps?

40

& Global Coordinator

Gradually regrant

Runtime

Midas in Practice

1 1
1 1
i IS)
35 |3 |
| © o -___Ea !
|5 5 o |
! (0b]
184 |mgl |
H & allll 2f
! af
e |
“ i
_ i
1 —~
_.nnum O w !
1| =5 S5 I
Il @ > O
“Sm O o I
1| Q9 L = I
T = !
i i
1 1
b e ———— d
‘IIIIIIIIIIIIIIIIIIIIII-
i =2 i
| o2 L v “
—.In ee 1
1| =8 —]
83 =3 |
1
|1 22 =z |
—Wd B 1
I o !
1 S
1 N’ 1
e e ——————— o
I — e mm———————=a
i i
“ r.B 1
o= |l 28 |
[- 1
- 20 |
i B Q !
£ 2 j
“.mm i
O® 7)) 1
1
1| OO0 O O |!
oo c O |i
“ EIIESE © 3 ||
| 2||& 2 |!
“ ﬂe 1
! = |i
]

41

Midas in Practice

[e e e | e ———————— 1 e ——— e ———— 1 e —————————
1 "L 1 1 1 1

: SocialNet i i WiredTiger |i i| HDSearch [/ i| Storage

i (from DeathStarBench) i : (used by MongoDB) . (from pSuite) 1! Server
—— = I —
i E"G RPCs i i gGStorage /0 i i g‘o DNN i i s,_"r’c Disk I/0

: : 1 1 1 1 1

i|| Timeline i i[| B+Tree || i[| Feature || ilf .
i{|Webpages Do Nodes i i|| Tensors ||i i Disk Blocks

: : 1 1 1 \! /1 1 /
. I I

& Global Coordinator

42

Evaluation

1. Can Midas harvest and coordinate soft memory among applications?

2. Can Midas quickly react to memory pressure?

43

Colocating Four Applications

20 GiB idle memory

1001
A 8
_ T 75]
° C>>c§»50
| F 25
0
0 5 10 15 20 25 30 35

Time (minutes)

44

Colocating Four Applications

—— Overprovisioning

- 20 GiB idle memory

Baselines:
1. Overprovisioning 100
(67.5 GiB soft memory usage) /\

~
(92

Better
Overall
Throughput (%)
ul
o

N
Ul

o
o
wu

10 15 20 25 30 35
Time (minutes)

45

Colocating Four Applications

—— Overprovisioning

- 20 GiB idle memory
—A— Static Provisioning

Baselines:
1. Overprovisioning 100
(67.5 GiB soft memory usage) /\ g -
2. Static Provisioning _ f=°§_
. () —
+ SGiB perapp 3| 35 50 b
o>
o
| £ 25
0
0 5 10 15 20 25 30 35

Time (minutes)

46

Colocating Four Applications

—— Overprovisioning

- 20 GiB idle memory
—A— Static Provisioning

Baselines:
1. Overprovisioning 100
(67.5 GiB soft memory usage) /\ > - 49% of the ideal throughput
2. Static Provisioning g r=5§_ W
.) [
* 5GiB per app || 35 50 At
o=
o
| £ 2
0
0 5 10 15 20 25 30 35

Time (minutes)

47

Colocating Four Applications

—— Overprovisioning
—©— Midas
—A— Static Provisioning

- 20 GiB idle memory

Baselines:
1. Overprovisioning 100
(67.5 GiB soft memory usage) /\ g -
2. Static Provisioning . (=£§_
* 5GiB per app 5[£5 50 Y S S, " ——
©3
Midas | £ 25]
- Initially 5GiB per app
« Dynamically coordinate 00 5 10 15 20 25 30 35

Time (minutes)

48

Colocating Four Applications

—— Overprovisioning

- 20 GiB idle memory

lidas
Baselines: 71% less memory tatic Provisioning
1. Overprovisioning 100 \T\
(67.5 GiB soft memory usage) /\ g Je

2. Static Provisioning 1l T3

. 5GiB per app Sl 5
Midas] 1.5x higher throughput

- Initially 5GiB per app |

+ Dynamically coordinate O(') 5 10 15 20 25 30 35

Time (minutes)

49

Reacting to Memory Pressure

- Run WiredTiger with 15 GiB soft memory initially

)
14

Better
Throughput

(MOPS)
o o
~ W

o
w

)
14

Better
Memory
Usage (GiB)

e
© n o U

00 25 50 7.5 10.0
Time (minutes)

12.5

15.0

50

Reacting to Memory Pressure

- Run WiredTiger with 15 GiB soft memory initially

- Then launch the memory antagonist

- Fast memory allocation (7 GiB/s) at t=5min and t=10min

)
14

Better
Throughput

y-

(MOPS)
o o
~w

o
w

)
14

— Idle

Antagonist

Better
Memory
Usage (GiB)

i
o u o u

00 25 50 7.5 10.0 12.5 15.0
Time (minutes)

Reacting to Memory Pressure

- Run WiredTiger with 15 GiB soft memory initially

- Then launch the memory antagonist

- Fast memory allocation (7 GiB/s) at t=5min and t=10min

)
14

Better
Throughput

y-

(MOPS)
o o
~u

o
w

)
14

Better
Memory
Usage (GiB)

— |dle

Antagonist
—6— Soft

WiredTiger

=
o U1 O WU

00 25 50 7.5 10.0 125 15.0
Time (minutes) 52

Reacting to Memory Pressure

- Run WiredTiger with 15 GiB soft memory initially

- Then launch the memory antagonist

- Fast memory allocation (7 GiB/s) at t=5min and t=10min

F]
3
=m

Brief performance drop but quickly L/ N

recover to the normal level

Better
Iemory

m 151 . S
5 4 Antagonist dle
2

[0) B W
Midas rapidly scales down soft memory . .

usage to avoid out-of-memory killing F‘S 5"I9ime (Zﬁ!isnutei?lo 12.5 15.0)

Conclusion

Midas enables applications to harvest idle memory for application soft state

Key designs:
1. The soft memory abstraction offering seemingly unlimited cache space

2. A runtime that manages soft state in available idle memory

3. OS kernel support that quickly reclaims memory under pressure

https://github.com/uclasystem/midas

54

https://github.com/uclasystem/midas

Thank You!

