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Abstract
Many applications can benefit from data that increases perfor-
mance but is not required for correctness (commonly referred
to as soft state). Examples include cached data from backend
web servers and memoized computations in data analytics sys-
tems. Today’s systems generally statically limit the amount of
memory they use for storing soft state in order to prevent un-
bounded growth that could exhaust the server’s memory. Static
provisioning, however, makes it difficult to respond to shifts
in application demand for soft state and can leave significant
amounts of memory idle. Existing OS kernels can only spend
idle memory on caching disk blocks—which may not have the
most utility—because they do not provide the right abstractions
to safely allow applications to store their own soft state.

To effectively manage and dynamically scale soft state, we
propose soft memory, an elastic virtual memory abstraction
with unmap-and-reconstruct semantics that makes it possible
for applications to use idle memory to store whatever soft state
they choose while guaranteeing both safety and efficiency.
We present Midas, a soft memory management system that
contains (1) a runtime that is linked to each application to
manage soft memory objects and (2) OS kernel support that
coordinates soft memory allocation between applications
to maximize their performance. Our experiments with four
real-world applications show that Midas can efficiently and
safely harvest idle memory to store applications’ soft state, de-
livering near-optimal application performance and responding
to extreme memory pressure without running out of memory.

1 Introduction

A wide range of applications can benefit from storing soft state
in memory, including web applications [43], databases [32],
key-value stores [30], CDN services [12, 34], and model serv-
ing frameworks [9]. Data is considered soft state when it is help-
ful for efficiency, but discarding it does not impact correctness
because it can easily be reconstructed if it is later needed. For ex-
ample, caches and memoization are both common forms of soft
state. Soft state enables applications to trade extra memory con-

sumption for better performance, and these gains generally in-
crease with the amount of memory available [45, 47]. A signif-
icant fraction of memory is left idle in today’s datacenters [27,
48], suggesting there is a large untapped opportunity to improve
overall efficiency by using idle memory to store soft state.

While spending memory on soft state can improve
performance, it must not compete with the need to store regular
application data. For example, if too much memory is spent
on soft state, this could lead to swapping to disk or worse still,
out-of-memory errors, which can result in failures. Because
of this, developers often limit their storage of soft state to a
small static amount, for fear that they may run out of memory.
In other words, it is a challenge to allocate enough soft state
to consume all available idle memory, but to not go beyond
the point where it would cause performance issues or failures.

Existing OS abstractions for elastically responding to
changes in available idle memory are too limited. For example,
the Linux Kernel maintains a page cache that automatically fills
idle memory but it can only be used to cache disk blocks. This
constrains idle memory to storing just a single type of soft state
which may or may not provide the most utility for applications.

An ideal abstraction would instead democratize access to
idle memory so that each application could choose how to best
spend it (i.e., the type of soft state that is most beneficial). For
example, suppose an application does not rely much on local
storage, but frequently accesses objects stored in a key value
store over the network. Instead of being limited to the page
cache, idle memory could be spent on caching the key-value
store’s objects locally, resulting in a much greater benefit.

This problem is further complicated in today’s multi-
tenant cloud. It is common for each server to run multiple
applications, and they may come from different users and
exhibit dramatically different performance sensitivity to the
amount of soft state. At the same time, adding memory to one
application can lead to reductions in the performance of others.
Consequently, determining how to dynamically balance
the soft state needs of different applications in a way that
maximizes overall memory utility/performance is a challenge.
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Insight. In this paper, we aim to answer the following
question: can we provide a new virtual memory abstraction for
soft state (herein referred to as “soft memory”) that developers
can use to coordinate with the kernel so that they can take full
advantage of all available memory? In other words, our goal
is to no longer limit idle memory to the page cache, and to
instead allow its use to be customized by each application in
a way that maximizes overall utility.

Unlike existing systems that perform caching entirely in
the user space [2, 9, 30], we propose Midas, a system that
coordinates with the kernel to dynamically provision soft
memory between applications. The advantage of this approach
is two-fold. First, application developers can program with
the illusion of an “unlimited cache”, and are thus freed of the
burden of manually managing their soft state. To avoid running
out of memory, the kernel responds to memory pressure by
rapidly unmapping soft memory pages. To transparently
recover any lost soft state, later accesses will automatically
trigger the application to reconstruct the missing soft state.
Second, the kernel has global visibility of all applications,
their memory usage, and the amount of idle memory, making
it possible to understand each application’s sensitivity to
memory size and automatically coordinate soft memory
allocation between applications. Midas also incorporates the
page cache by treating it as another source of soft memory.

Challenges. Midas is a soft memory management system that
achieves (1) programming flexibility and (2) dynamic memory
provisioning, with unmap-and-reconstruct semantics, to
guarantee both safety and efficiency. Realizing these benefits
requires overcoming four major challenges:

First, what interfaces shall we expose to developers? To im-
prove usability, Midas provides developers with a soft memory
pointer abstraction (similar to C++ smart pointers) to access
soft memory easily and safely (see §4.1). Midas offers a set
of high-level key-value store APIs, which are similar to those
of popular cache services (such as Memcached [30], Redis [2],
CacheLib [9], etc.), but enhanced to allow the exposure of
more semantics to the runtime. A critical interface we expose
to developers is data structure reconstruction—developers
not only register soft memory objects but also specify their
(re)construction logic, so soft state can be transparently
regenerated if it is later accessed after it was evicted.

Second, how shall soft memory be managed? Program
data is allocated as objects on the heap but the kernel cannot
recognize them, as it is only aware of memory pages. As a
result, if we let the kernel manage soft memory alone, it could
only reclaim space in coarse-grained units without knowledge
of what objects the space contains. For example, reclaiming
hot (i.e., frequently accessed) objects in a soft-state cache can
lead to significant slowdowns. In addition, it is undesirable to
reclaim space from the programs that would benefit the most
from soft state when others need it less, but such performance
sensitivity information is invisible to the kernel.

To solve the problem, we propose a runtime library that can
be linked into each application to recognize object behaviors,
letting the runtime and the kernel co-manage soft memory.
The Midas runtime offers a log-structured allocator [41] and a
concurrent evacuator that continuously identifies and compacts
hot objects into a small soft memory space. This information
(of hot and cold regions) is shared with the kernel so that it can
focus its reclamation on regions with cold objects (see §4.2).

Third, how can we coordinate soft memory allocation
between applications? The runtime can only see each applica-
tion’s individual behavior without any global knowledge of the
server’s available memory and other applications’ needs. Fur-
thermore, the runtime can only manage objects in user space,
but cannot dynamically add/remove memory between appli-
cations. To overcome this challenge, we propose a global coor-
dinator inside the Linux kernel. The coordinator periodically
probes each application by communicating with the runtime to
request information regarding the application’s sensitivity to
cache size. Cold regions of soft memory from applications that
are less sensitive to size changes will be reclaimed and memory
will be given to those that are more sensitive (and hence benefit
more from a larger cache) by the kernel (see §4.3).

Finally, how can the kernel quickly reclaim soft memory
without disrupting a running application? Since the kernel
operates at page granularity, a natural idea is to swap out
pages that contain soft-state data. Unfortunately, swapping is
disruptive—swapping out a page blocks all incoming memory
allocations and hence all threads of the application; frequently
swapping pages can introduce significant overheads that
prevent applications from reaching service-level agreements
(SLA) [40] (see §2).

To maintain high efficiency, Midas instead uses the kernel
to unmap pages directly (which is much faster than swapping
them to disk). When pages are unmapped, their underlying
data is lost—this is acceptable for soft state because it can
be regenerated. Without coordination, however, the kernel
cannot distinguish soft state from application data, making
unmapping potentially unsafe.

To solve this problem, our runtime is designed in a way that
is resilient to data loss. A soft pointer-based interface detects
data loss through segmentation faults that are triggered by the
runtime’s functions. These functions are carefully designed
to capture faults and transparently invoke a reconstruction
interface to regenerate the needed data (see §4.2.3).

Compared to paging, Midas does not freeze the execution
when shrinking soft memory, resulting in less disruption
to the application. Furthermore, reconstruction focuses on
recovering the individual objects that are needed and hence
is much more fine-grained and can be more efficient than
swapping, which brings back entire pages. Reconstruction
may require more computation than paging (the amount of
computation depends on exact soft state data). Therefore,
Midas provides a profiling tool that warns developers when
reconstruction incurs a high cost (discussed in §4.4).
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Figure 1: The throughput of all three applications increases by
caching more soft state, but the benefit varies: SocialNet is 1.8⇥
faster by caching 70% of its working set, while HDSearch, in contrast,
achieves a 3.3⇥ throughput increase by caching 50% state.

Results. With Midas, one can easily allow applications to
take advantage of soft state that do not currently support
it. It is also easy to port legacy code that uses an existing
cache system to use Midas instead. Our evaluation shows that
Midas can efficiently and safely harvest idle memory to store
applications’ soft state and achieve near-optimal performance
while reacting to extreme memory pressure quickly enough
to avoid running out of memory. By effectively granting
soft memory to the applications that benefit the most, Midas
achieves 1.34⇥ higher overall throughput than Cliffhanger
(a state-of-the-art caching system). Midas is available at
https://github.com/uclasystem/midas.

2 Motivation

Many types of applications can benefit from soft state. For ex-
ample, a web frontend could cache content locally after loading
it from a backend to reduce network traffic and improve re-
sponse times; a database could cache the results of user queries
to reduce disk I/O and improve throughput; and a data analytic
or machine learning system could memoize intermediate
computation results to eliminate redundant computations.

To gain a high-level understanding of how much improve-
ment can be achieved by storing soft state, we experimented
with three datacenter applications: SocialNet (from Death-
StarBench [18]), MongoDB [32], and HDSearch (from
µSuite [46]). Each of these applications are capable of
using soft state. SocialNet [18] is a web forum built using
microservices; it employs Memcached and Redis to cache
user data in its frontend services. MongoDB [32] is a NoSQL
database; it has a built-in, in-memory caching engine that
caches recently queried data. HDSearch is an image search
service that memoizes the feature vectors of the images in its
corpus, generated by a GPU-based DNN.

Figure 1 shows the throughput of each application with vary-
ing amounts of soft state. The x-axis represents the percentage
of each application’s working set cached in memory, and the
y-axis shows the normalized throughput (to its performance
without soft state). Soft state is helpful to all applications
but the amount of benefit it provides varies. SocialNet is the
least sensitive to its soft state size; however, it still sees a
1.8⇥ speedup by storing 70% of its soft state. HDSearch, in
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Figure 2: SocialNet starts to swap when it caches excessive data
and exhausts all available memory at t = 8min and it experiences a
throughput collapse.
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1Figure 3: Statically provisioning the cache space for SocialNet is sub-
optimal. During t=0min–5min, the cache is overprovisioned which
wastes memory. After that, the cache becomes underprovisioned
which limits performance.

contrast, is more sensitive to the soft state size—its throughput
increases by more than 3⇥ with only 50% of its soft state.

Real-world datacenter applications can access a massive
amount of data. For example, a web forum like Twitter
generates petabytes of new data every day [49]. Thus, blindly
storing soft state in memory without a proper limit can hurt
application performance. An example of this problem is
shown in Figure 2. Storing soft state increases the throughput
of SocialNet up to a point. However, when idle memory
becomes exhausted, the kernel begins to swap out pages (at
t=8min), leading to a severe collapse in throughput.

A simple strawman solution is to statically provision a
limited memory capacity for storing soft state so that memory
use does not grow unbounded. However, provisioning the
right capacity is extremely challenging in practice.

First, for each application, we must find its sweet spot
of cache capacity; underprovisioning limits performance
while overprovisioning wastes memory. In addition, data-
center applications often have phased behaviors and load
variability [7, 8], making it impossible to have a simple static
configuration that is optimal at all times. For example, Figure
3 shows the results of SocialNet when statically provisioning
it with 4 GiB for storing soft state. It takes about 5 minutes
to fully fill this memory, leading to a suboptimal utilization
during this period. Performance increases with more usage
until it exhausts the soft state limit. After that, performance
flattens out despite the possibility of higher throughput if
additional soft state memory were available (the optimal line).

Second, as shown by Figure 1, different applications gain
different amounts of benefits through caching. To achieve
optimal overall performance with a limited amount of memory,
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Figure 4: Midas enables developers to utilize soft memory easily and
efficiently with three major components: a familiar programming
abstraction, an application-integrated runtime, and a global soft-
memory budget coordinator.

one must grant space correctly to the applications that benefit
the most. For example, initially MongoDB’s performance
is most sensitive to the amount of soft state (the left side of
Figure 1), and thus we should prioritize its need. However,
the return diminishes quickly after caching 30% of its state.
To make the best use of the remaining memory, we should
respond by granting memory to HDSearch.

These problems call for a new system that can provide
elastic access to soft state for applications and dynamically
coordinate usage among applications in response to each
one’s execution phase and sensitivity to soft state size. To
be efficient, soft state should be able to quickly scale up and
down its capacity with little disruption. To be safe, the system
should be resilient to data loss caused by scaling down. To be
responsive, the system should conduct coordination among
applications quickly. Finally, to be practical, the system should
provide familiar programming abstractions for developers to
store and access soft state.

3 Midas Overview
As shown by Figure 4, Midas consists of three main com-
ponents: a programming abstraction for using soft memory
(§4.1), an application-integrated runtime that manages soft-
memory objects (§4.2), and a global coordinator that arbitrates
soft memory usage across different applications (§4.3).

Midas provides programming abstractions that enable sim-
ple and efficient use of soft memory through familiar APIs. At
a low-level, programmers can interact with Midas through soft
memory pointers, an abstraction that provides object ownership
similar to C++ smart pointers. However, it differs in that under-
lying objects can be forcibly released when under memory pres-
sure, even if still in scope. If a released object is later accessed,
a reconstructor function is invoked to regenerate the missing
object (e.g., by fetching it from a database over the network).

Building upon soft memory pointers, Midas provides a
higher-level library of familiar STL-style soft data structures—
including arrays, hash tables, and queues. These hide the
complexity of managing individual soft memory pointers, and
can be used as drop-in replacements for existing data structures.
For example, a developer building a key-value store similar
to Memcached could use a soft hash table to store soft memory
objects. Midas’s high-level interface is generally sufficient for
most use cases, but developers are free to build their own cus-
tom soft data structures through use of soft memory pointers.

Midas manages soft memory objects through a runtime
that is linked as a library with the application. It serves as an
allocator for soft memory objects. It works cooperatively with
the coordinator (discussed next) to determine the best memory
to release (i.e., idle memory first, then cold objects, and finally
hot objects). To achieve this, the runtime provides a moving
allocator that embraces the idea of log-structured memory [41]
to organize soft memory into different segments. An evacuator
thread scans and compacts logs to segregate hot objects, cold
objects, and dead objects. This helps both to coordinate which
memory should be freed and to reduce fragmentation.

However, the runtime is not trusted for correct operation.
If it fails to respond quickly enough or if memory pressure
becomes too severe, pages will be unmapped in an uncoordi-
nated fashion to avoid swapping. In the event such forcible
revocation happens, the runtime is designed to safely tolerate
page faults when accessing unmapped memory. To achieve
this, we developed a set of page-fault-resilient functions and
used them as primitives to build our runtime.

Midas’s global coordinator dynamically adjusts the soft
memory budget among applications to optimize their overall
performance. It periodically probes the marginal utility of soft
memory for each application by granting a small amount of
additional memory and observing the effect on performance.
Using this information, the coordinator can optimize the
allocation of soft memory by granting it to the applications
that benefit the most. The coordinator defines the global
utility function as the weighted average of all applications’
performance and employs a hill-climbing algorithm to
approach the global optimal point. Midas allows operators
to specify the weight of each application to indicate relative
significance, similar to the nice interface of Linux.

4 Design
4.1 Soft Memory Abstraction
Soft memory is a new type of memory that can be revoked
under memory pressure. In Midas, soft memory is backed
by physical pages that can be unilaterally unmapped and
reclaimed by the OS kernel. Accessing reclaimed soft memory
will trigger a reconstruction event to rebuild the missing data.
Midas provides a smart-pointer-like API to enable developers
to easily use soft memory, hiding the complex details of soft
memory allocation/deallocation, page-fault handling, and data
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1 template <typename T, typename... ReconArgs >

2 class SoftMemPool {

3 SoftMemPool(std::function <T(ReconArgs...)>

4 reconstructor);

5 SoftUniquePtr <T, ReconArgs...> new_unique();

6 SoftSharedPtr <T, ReconArgs...> new_shared();

7 };

8

9 template <typename T, typename... ReconArgs >

10 class SoftUniquePtr {

11 ~SoftUniquePtr();

12 T read(ReconArgs... args);

13 void write(T newval);

14 bool cmpxchg(const T &oldval , T newval);

15 };

Listing 1: Midas’s soft memory pool and unique pointer interface.
1 template <typename T> class SoftArray {

2 SoftArray(size_t size , std::function <T(size_t)>

3 reconstructor);

4 T read(size_t idx);

5 void write(size_t idx, T t);

6 bool cmpxchg(size_t idx , const T &oldval , T newval);

7 };

8

9 class BlockCache {

10 BlockCache(size_t sz) : array_(sz, [](size_t idx) {

11 return read_from_storage(idx); }) {}

12 Block read(size_t idx) { return array_.read(idx); }

13 void write(size_t idx, Block block) {

14 array_.write(idx , block);

15 write_to_storage(idx , block);

16 }

17

18 SoftArray <Block > array_;

19 };

Listing 2: Midas’s soft array interface and a simple user-level storage
block cache (similar to Linux’s page cache) built using soft array.

reconstruction (§4.1.1). Furthermore, Midas offers high-level
data structure libraries as composable building blocks (§4.1.2).

4.1.1 Soft Memory Pointer
Listing 1 shows Midas’s soft memory pool and pointer

interface. To use soft memory, developers first need to create
a soft memory pool which can later be used to allocate soft
memory pointers. The pool abstraction conceptually groups
together soft pointers whose objects can be reconstructed in
a similar way. Midas exposes the pool as a C++ template class
whose parameters consist of two parts: T, which is the object
type of soft pointers to allocate, and ReconArgs, which are the
types of arguments used for reconstructing a missing object.
Developers can initialize a pool with a reconstructor

function and then allocate pointers using new_unique (for
soft unique pointers, similar to C++’s std::unique_ptr)
and new_shared (for shared pointers).

Soft memory pointers support automatic lifetime man-
agement through reference counting. Developers can use
its read API to get the value of the pointed object. In case
the underlying soft memory has been reclaimed, Midas will
automatically reconstruct the missing object using the recon-
struction arguments passed into read (we will show a concrete
example soon in §4.1.2). Midas hides the raw reference and
returns the value by copying. This is critical as the underlying
reference may become invalid any time when the soft memory
gets reclaimed. With copying, Midas restricts potential

faulting sites to stay inside Midas’s internal code, thereby
freeing developers from handling complicated page faults in
the application code. The copying design incurs negligible
performance overheads (only a few additional cache accesses).
write enables developers to update the object value. However,
different from read, write does not require reconstruction
arguments as Midas can directly rebuild the object using the
new value. Soft pointers also support atomic operations like
compare-and-exchange, enabling developers to atomically
update object values to support multi-threaded applications.

With its smart pointer design, Midas is able to capture rich
application semantics for effectively managing soft memory.
For example, since all soft object accesses go through the
read/write API, Midas can accurately track the hotness
information of each object which can be leveraged by Midas
runtime for making intelligent object placement and eviction
decisions (details in §4.2). Soft pointer’s automatic lifetime
management enables cascading eviction, improving the
efficiency of using soft memory. For instance, in a web forum
application, a forum post object may contain a soft unique
pointer to an attached picture. Under memory pressure, Midas
may decide to evict the post object in which case the reference
count of the picture pointer will automatically drop to zero
and trigger evicting the dangling picture object cascadingly.

4.1.2 Soft Data Structures

To further reduce the programming effort of using soft
memory, Midas offers high-level data structures as convenient
building blocks. Midas’s built-in data structures include soft
arrays, soft hash tables, and soft queues; developers can also
easily build more based on the soft pointer abstraction.

Listing 2 presents the interface of soft array (lines 1-8).
Developers can create a soft array by specifying its size and
reconstructor (which rebuilds the array element of a given
index). Soft array supports standard read, write, and atomic
operations by index. Under the hood, a soft array is simply
implemented via an ordinary array of soft pointers.

Lines 10-21 present a user-level storage block cache as a
simple illustrative application, similar to Linux’s page cache.
BlockCache internally wraps a soft array whose elements
are storage blocks (line 20). This enables it to efficiently
leverage idle memory to cache storage blocks in a best-effort
manner. For each block read request, it simply retrieves the
result from the soft array (line 14). Upon an element miss,
the array automatically reconstructs the element by reading
the block back from the storage device (lines 12-13). For each
block write request, BlockCache updates both the cache in
array and the data in storage.

4.2 Application-Integrated Runtime
Midas runtime is the key component that manages soft objects
to enable efficient use of soft memory. It includes a log-
structured memory allocator that serves memory allocation
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Figure 5: Midas organizes soft memory using a free segment list and
a used segment list (sorted by segment’s hotness, useful for Midas’s
evacuator in §4.2.2). It employs a log-structured allocator to serve
memory allocation requests. Each object has a 10-byte header, which
includes a liveness bit, an evacuating bit, hotness bits, an object size
field, and a reversed pointer field.

requests and organizes objects into a list of segments (§4.2.1),
a concurrent evacuator that constantly compacts hot objects
and releases cold and dead objects (§4.2.2). Page faults can
happen in Midas runtime when the soft memory it is accessing
gets reclaimed and unmapped because of memory pressure.
To ensure robustness, we carefully built the runtime using a
set of page-fault-resilient functions which are able to capture
page faults and gracefully recover from them (§4.2.3).

In Midas, the runtime as well as the soft memory it manages
are linked directly into each application’s address space.
Compared to traditional cache services (e.g., Memcached) that
run in a separate process, our design offers several important
advantages. First, it provides direct and efficient soft memory
accesses for applications, eliminating the inter-process
communication (IPC) overhead. Second, it enables our
runtime to profile the application and collect semantics, greatly
facilitating semantics-aware optimizations. Third, since
each application has its own runtime, we can easily enforce
soft memory isolation among applications and adaptively
customize the memory management policy of each application.

4.2.1 Log-structured Soft Memory Allocator

Midas embraces the idea of log-structured memory [41]
to manage soft memory; it reduces memory fragmentation
through compaction, thereby achieving higher efficiency in
utilizing soft memory.

Midas’s log-structured allocator organizes soft memory
using a free segment list and a used segment list, illustrated
in Figure 5. Segments are the units for Midas to perform
evacuation to compact objects and reclaim space (details in
§4.2.2). The total size of all segments (used and free) equals the
soft memory budget that the linked application receives from
the global coordinator (§4.3). For each memory allocation
request, the allocator allocates space from a free segment;
if the current one is full, it will pop a new one from the free
list. Midas backs each segment using a 2 MiB huge page; this
reduces TLB pressure and page table walk cost. While small
objects reside in only one segment (i.e., they do not cross the
segment boundary), big objects whose sizes are larger than 2
MiB span across multiple segments. Since the free list does not
provide any address contiguity guarantee for segments, Midas

breaks the big object into smaller pieces—each one fits into
a single segment—and chains them together using segment
headers. The decomposition is transparent to application
developers; upon object read, Midas automatically reads all
segregated pieces and stitches them back. This is possible
thanks to Midas’s pass-by-copy interface (§4.1).

Each allocated object has a 10-byte header inlined with
its data, used for tracking the object’s runtime information.
This includes 1) a liveness bit, indicating whether the object
has been deallocated; 2) an evacuating bit, marked by the
evacuator to synchronize evacuation with object accesses; 3)
hotness bits, a counter that will be incremented (or unchanged
when it has reached the maximum) each time the object gets
accessed; 4) a size field, indicating the total size of the object;
5) a reverse pointer field, used by the evacuator, if it moves
the object, to rewrite the soft pointer.

4.2.2 Soft Memory Evacuator

As the allocation goes on, the application may eventually
deplete the free segment list. It is the responsibility of Midas’s
evacuator to constantly release cold and dead objects, ensuring
the best use of soft memory by only storing hot objects. In
addition, the evacuator tracks segments in order of hotness
in a used list (see Figure 5), to simplify the design and improve
the speed of memory reclamation, in which the kernel forcibly
unmaps application’s soft memory pages under intense
memory pressure (§4.3).

Midas’s background thread continuously monitors the
free segment ratio and triggers evacuation if it falls below
a configurable threshold (our default value is 90%). The
evacuation mainly consists of three stages:
Scanning Stage. The evacuator first scans through all objects
in the used segment list. For each scanned object, it decrements
the embedded hotness counter (similar to the CLOCK
algorithm [15]). The evacuator treats objects with a zero pre-
scanning hotness value, in addition to deallocated objects, as
dead objects; they will be released in the compaction stage. The
evacuator calculates the live ratio of each segment (i.e., the per-
centage of live bytes) during scanning, and then uses it to sort
all scanned segments to decide their priority for compaction.
The segment with the lowest live ratio will be compacted first
as it yields the largest benefits (in terms of the reclaimed space).
Compaction Stage. The evacuator compacts one segment at a
time. For each live object, it first relies on the evacuation bit to
synchronize with application threads to avoid data race (similar
to AIFM [40]). It then copies the object into a new segment and
leverages the reversed pointer field to rewrite the address of the
corresponding soft pointer. After evacuating all live objects, it
moves the segment from the used list into the free list.
Sorting Stage. After compaction, the evacuator calculates the
segment-level hotness value for all segments in the used list,
defined as Â8ob j2seg SIZE(ob j) ·HOT NESS(ob j). It finally
sorts the used list by segment-level hotness in ascending order.
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1 for each segment S to compact {

2 D = pick_destination_segment();

3 for each object O in S {

4 try {

5 // A wrapper around our PF-resilient memcpy

6 copy_object_into(O, D);

7 } catch (SoftMemUnmapped &exception) {

8 if (exception.fault_addr belongs to O)

9 break; // Skip S as it has gone

10 else // It must belong to D

11 goto line2; // Pick a new D and restart

12 }

13 }

14 }

Listing 3: Midas implements its evacuator’s compaction code using a
page-fault-resilient memory copy function.

4.2.3 Page-Fault-Resilient Functions

Midas runtime directly manipulates soft memory during
allocation and evacuation. Since the kernel may unmap soft
pages to reclaim memory under pressure (details in §4.3), the
runtime has to be aware of page faults and be able to recover
from them gracefully. We carefully built the runtime to achieve
this goal. First, we stored the important metadata (e.g., the
free and used segment lists) in normal memory instead of soft
memory, therefore it will not be lost under memory pressure.
This is viable as the metadata only consumes little memory
(less than 10 MiB). Second, we introduced page-fault-resilient
functions and used them as primitives to build the runtime.

A page-fault-resilient function is able to capture any internal
page fault that stems from dereferencing unmapped soft mem-
ory and respond to it by reverting all side effects and throwing
a SoftMemUnmapped(fault_addr) exception to the caller.
As a concrete example, in Midas we internally implemented
a page-fault-resilient memory copy function, which is used to
build the evacuator’s compaction code to withstand page faults
(see Listing 3). Page faults can happen when copying objects
from the old segment into the new segment. To deal with this
case, Midas uses its resilient memory copy function (line 7)
to capture and handle the potential exception (lines 8-13).

Midas registers its own signal handler to facilitate capturing
and handling all soft-memory-related page faults. Addition-
ally, a page-fault-resilient function satisfies the following
requirements to ensure resilience:

• It embeds a fault recovery code block for aborting the
partial execution and rolling back side effects. Midas
runtime maintains a mapping from resilient functions to
their recovery blocks so that when page fault happens the
handler can invoke the corresponding recovery code.

• All of its inner non-resilient functions have to be inlined
to prevent the control flow from jumping out of its scope.
Otherwise, the page fault handler is unable to find the
corresponding recovery code.

• It preserves its stack frame base pointer (by disabling the
compiler optimization) so that the fault handler can easily
unwind its stack and throw an exception back to its caller.

4.3 Global Soft Memory Coordinator
Midas’s global coordinator is responsible for granting
server’s idle memory to applications as soft memory and
coordinating the budget across applications to optimize the
overall performance.

4.3.1 Soft Memory Management Mechanism

The coordinator maps idle memory pages directly into an
application’s address space as soft memory segments. For
each application, the coordinator dynamically maps or unmaps
pages to readjust its soft memory budget. To facilitate the
management, the application’s runtime shares its free segment
list and used segment list with the coordinator.

To grant more soft memory to an application, the co-
ordinator maps more pages to it and inserts them into the
free segment list. Similarly, to reclaim memory from an
application, the coordinator unmaps pages. The coordinator
first tries to pop out and unmap the segments from the free list;
since they do not hold any useful live objects, unmapping them
does not incur any impact on the application’s performance.
Meanwhile, the runtime strives to avoid the exhaustion of the
free list by triggering evacuation (§4.2.2).

The synergy between the runtime and the coordinator is able
to handle moderate memory pressure (i.e., the common case).
However, under severe pressure, the evacuation may fall be-
hind, leading to an empty free segment list. To avoid depletion,
the coordinator reacts by unmapping used segments which may
induce performance disruption in two folds. First, when the ap-
plication later tries to access an unmapped object, the runtime
will experience a page fault which incurs overhead. Second,
the runtime has to spend additional time reconstructing the
missing object. To alleviate this issue, the coordinator priori-
tizes cold segments over hot segments. Thanks to the evacuator,
the segments in the used list have been ordered by their hotness
(§4.2.2). Therefore, the coordinator can realize prioritization
by simply unmapping segments based on their order in the list.

4.3.2 Coordination Policy

Midas continuously adjusts each application’s soft memory
budget by solving the following optimization problem:

maximize
m Â

8i2APPS
wiGi(mi) , subject to Â

8i2APPS
mi=M

For each application i, wi denotes its weight (which is either
specified by the operator or uses the default value 1) and Gi
denotes its performance utility when assigned soft memory
of size mi. The server-wide overall utility is defined as the
weighted sum of all application’s utilities. M denotes the
server’s total idle memory.

By default, the coordinator estimates Gi as �RCOSTi,
where RCOSTi is the application’s CPU usage spent on
reconstructing missing objects. Midas’s runtime can easily
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collect this per-application information and report it to the
coordinator. Developers can also plug in the real performance
metric reported by applications—which already exists in many
datacenter applications [11]—for a more faithful Gi.

Midas solves the optimization problem using the hill climb-
ing approach [42]. It periodically probes every application’s
marginal utility benefit ∂Gi(mi)

∂mi
by additionally assigning a

small portion of memory Dmi and monitoring the change of
utility DGi . Midas regrants the soft memory budget from the
application with the lowest marginal utility benefit to the one
with the highest benefit.

In contrast, Cliffhanger (a recent cache service) [13]
adopts a coordination policy that optimizes for the overall
cache hit rate, but this does not necessarily optimize the
overall performance. For example, caching objects that are
frequently accessed may not be helpful if they can be cheaply
reconstructed. Midas avoids this issue by using both access
frequency and reconstruction cost as metrics for optimization.

4.4 Discussion
Though Midas is mainly designed for caching hot data and
memoizing intermediate computation results, developers have
the freedom to put any data into soft memory as long as it is re-
constructible. However, storing data that is expensive to recon-
struct but infrequently accessed can lead to performance issues.
Midas provides a profiling tool that generates runtime warnings
if such cases are detected. In addition,Midas offers a debugging
mode where we validate the reconstruction logic by calling the
user-defined reconstruction function and comparing its result
with the actual cached object using the object’s comparison
operator. Bugs are reported if these objects are not identical.

Midas also incorporates Linux’s page cache by simply
treating it as another per-application soft memory pool. For
each application, Midas’s shim layer intercepts all POSIX
file operations and caches the file data using a soft hash table,
whose keys are file inode numbers along with block-aligned
offsets and values are file blocks. The reconstructor rebuilds
the missing block by performing the actual file read.

5 Implementation

Midas is implemented in C++ and includes bindings for C.
Our implementation has 2,814 LOC for the soft memory
abstraction (§4.1), 3,866 LOC for the runtime (§4.2), and
1,029 LOC for the global coordinator (§4.3).

Soft data structures store their metadata (e.g., a hash table’s
bucket array that stores indices) in normal memory and store
their data payload (e.g., a hash table’s key-value pairs) in soft
memory using soft pointers.

The log-structure allocator enforces 16-byte alignment
for allocated data to make it GCC-compatible. The evacuator
adopts a concurrent pauseless design similar to AIFM [40].

The evacuator ensures atomicity when evacuating or recon-
structing large objects that span across multiple soft memory
segments. Midas registers its own SIGSEGV handler. For each
segmentation fault, the handler checks whether the faulting
memory address belongs to a soft memory region and whether
the faulting program counter (PC) belongs to a page-fault-
resilient function; for faults that do not meet these conditions,
the handler treats them as unrecoverable exceptions and aborts
the program. To facilitate the PC check, Midas leverages a
linker script to place all resilient functions into a separate code
segment whose layout is known at compile time.

During each application’s initialization, the runtime
registers itself to the global coordinator using ioctl and
uses mmap to create a shared memory region for exposing
information—including its free segment list and used list
(implemented as arrays) and the application’s reconstruction
cost (implemented as a counter)—to the coordinator.

We implemented the global coordinator as a user-space
daemon (that runs the coordination policy) and a privileged
kernel module (that executes the coordination decision by
mapping/unmapping pages to/from user processes directly).
Every 5 seconds, the coordinator probes the marginal utility of
each application and makes a new adjustment to soft memory
budgets. It probes an application by either granting or revoking
64 MiB soft memory and monitoring its performance change.
In each adjustment, it regrants up to 256 MiB soft memory from
the application with the lowest marginal utility to the one with
the highest utility. To avoid oscillation, it refrains from grant-
ing more soft memory to the application until it has consumed
the additional memory offered in the previous round.

6 Programming with Midas

We present general guidelines of programming with Midas
(§6.1) followed by concrete examples of porting four real
applications (§6.2).

6.1 Guidelines

When is it safe to use soft memory? Developers can
generally use soft memory to store any application data that
follows the unmap-and-reconstruct semantics. To support
evacuation, developers have to implement copy constructors
for objects stored in soft memory.
When is it beneficial to use soft memory? Developers should
generally consider using soft memory when applications can
opportunistically benefit from having additional memory.
Typical use cases include caching in web applications and
memoization in data analytics systems. They often have
unknown marginal utility and unbounded memory footprint,
making them hard to handle efficiently through static provi-
sioning. Midas can benefit them by automatically rightsizing
their soft memory budget and harvesting idle memory.
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Applications Abstractions
used

Porting
effort (LOC)

CPU
cores

Normal
mem. (GiB)

Peak soft
mem. (GiB)

Reconstruction
cost (µs/obj.) Dataset

HDSearch [46] Soft hash table 36 12 1.7 13.6 1244.2 OpenImg [25], 1.9M images
WiredTiger [33] Soft pointer 332 12 3.7 21.3 20.6 Facebook USR [8], 50M KV

Storage Server [24] Soft array 29 4 1.1 20.4 10.5 multilate [23], 16 GiB disk

SocialNet [18] Soft hash table
Soft queue 175 20 1.3 12.2 99.1–3227.7 Socfb-Penn94 [39],

41.5K nodes, 1.4M edges

Table 1: We ported four applications into Midas with low programming effort. All four applications extensively use soft memory while their
data reconstruction costs vary drastically.

How to migrate from traditional cache services? Exist-
ing applications that employ local cache services (e.g., Mem-
cached [30] or Redis [2]) can directly use Midas as a drop-in re-
placement. Existing applications that employ distributed cache
services (e.g., AWS ElastiCache [1]) can use Midas as a fast lo-
cal cache tier to reduce the overhead of accessing remote cache.

6.2 Application Case Studies
We ported four applications to Midas. They cover a range of
CPU usage,normal and soft memory usage,data reconstruction
cost, and Midas’s abstraction usage (see Table 1).
HDSearch [46] is an image search service based on content
similarity. For each query, a feature extraction backend
transforms the input image into a feature vector via a DNN
(running on GPU), and then caches the result along with a
hash of the image (using Memcached for memoization). To
port this application, we replaced Memcached with our soft
hash table, which only involves 36 LOC changes. It has 1.7
GiB normal memory usage and 13.6 GiB peak soft memory
usage. Reconstructing KV pairs is expensive (1244.2 µs per
object) as it requires re-performing transformation on GPU.
WiredTiger [33] is a NoSQL key-value storage engine used
by MongoDB [32]. It persists all key-value pairs in storage
indexed via an in-memory B+ tree. It has a built-in in-memory
caching engine that caches the data of B+ tree’s internal nodes
and leaf nodes to reduce expensive storage I/Os. To port
WiredTiger, we implement its caching engine using Midas’s
soft memory pool and pointer abstractions; we created a
soft memory pool with a reconstruction method that wraps
WiredTiger’s existing code for handling cache misses, and
replaced ordinary B+ tree pointers with soft memory pointers
allocated from the pool. This only involves 332 LOC changes.
With our port, WiredTiger has 3.7 GiB normal memory usage
and 21.3 GiB peak soft memory usage. Reconstructing a tree
node object requires reading its content from the disk and
rebuilding the index, which takes 20.6 µs.
Storage Service is an NVMe-based block storage service
similar to Reflex [24]. It exposes a standard block I/O interface
using RPC to support accessing 4KiB storage blocks remotely.
Its original design uses SPDK [3] to communicate with the
storage block device, which bypasses Linux’s page cache.
To port it, we cache the block data using a soft array, similar

to the BlockCache design in Listing 2. This requires adding
29 LOC. With our port, it uses 1.1 GiB normal memory and
20.4 GiB peak soft memory. Reconstructing an array element
requires a block I/O which takes 8.5 µs to finish.
SocialNet is a twitter-like latency-critical web service from
DeathStarBench [18]. It is built using 12 microservices with
sophisticated fan-out patterns and call dependencies. Its orig-
inal design uses Memcached/Redis to cache users’ data and
memoize results of certain queries, and employs pools to cache
TCP connections/RPC sessions. Since each microservice has
its own binary and runs within its own process, Midas treats
SocialNet as 12 different applications. To port it, for each
microservice, we replace its Memcached/Redis usage with
Midas’s soft hash table and connection pool with Midas’s soft
queue; this involves 175 LOC changes. With our port, it uses
1.3 GiB normal memory and 12.2 GiB peak soft memory. It
takes 99.1–3227.7 µs to reconstruct an object depending on
its type; for example, it takes only 99.1 µs to re-establish an
RPC session but requires 3227.7 µs to re-fetch a user’s post.

7 Evaluation

Our evaluation seeks to answer the following questions:
1. Can Midas judiciously coordinate soft memory among

applications to optimize overall performance? (§7.1)
2. Can Midas quickly and reactively harvest available idle

memory to improve utilization and performance? (§7.2)
3. Can Midas quickly react to memory pressure to avoid out-

of-memory killing while maintaining good performance?
(§7.3 and §7.4)

4. How does the data reconstruction cost of an application
affect its performance? (§7.4)

Setup. We conducted experiments on one server that equips a
48-core Intel Xeon Gold 6252 CPU and 128 GiB memory. The
server ran Ubuntu 20.04 with Linux 5.14. In line with prior
work [37], we enable hyperthreading, but disable dynamic
CPU frequency scaling, transparent huge pages, and kernel
mitigations for transient execution attacks. For interactive
services (e.g., SocialNet), we use a separate server to generate
load, which connects to the application server via a 10 GbE
network. For all four applications, we generated requests
with Zipfian distribution, consistent with the study of real
datacenter workloads [9].
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7.1 Coordinating Soft Memory

In this experiment, we investigated whether Midas can
judiciously coordinate soft memory usage among applications
to optimize overall performance.

We provisioned the server with 20 GiB idle memory and
co-ran all four applications (§6) using Midas. Initially, all
applications start with the same amount of soft memory (i.e.,
5 GiB), but Midas will dynamically adjust it. SocialNet has 12
loosely-coupled microservices and we start by evenly splitting
the 5 GiB budget across them. We measured the overall
throughput (defined as the average of all applications’ through-
put normalized to their ideal throughput) and the soft memory
usage. We compared Midas with three different baselines. The
first baseline overprovisions soft memory for each application
to cache all of possible soft state. This leads to a 67.5 GiB
soft memory usage that is impossible to achieve under 20 GiB
idle memory; thus, this represents the ideal throughput. The
second baseline limits itself to the 20 GiB soft memory budget
and statically partitions it across four applications in an even
manner (i.e., each application gets 5 GiB soft memory). The
third baseline is Cliffhanger [13]. Similar to Midas, it dynam-
ically coordinates soft memory among applications. However,
it adopts a different coordination policy of maximizing the
global cache hit rate as opposed to maximizing the overall
performance utility. As the original version of Cliffhanger
only supports Memcached, we emulated Cliffhanger by
implementing its coordination policy atop Midas.

A good result for Midas would show that it quickly reaches
an equilibrium by judiciously coordinating soft memory usage
among applications and achieves good overall throughput

close to the ideal throughput (of the overprovisioning
baseline). In contrast, the overall throughput of the static
provisioning baseline should be suboptimal, as it equally
treats all applications and fails to prioritize the soft memory
need of applications that can benefit the most. On the contrary,
Cliffhanger does coordinate soft memory among applications,
but it optimizes for the overall cache hit rate which does not
guarantee optimal overall performance (§4.3.2). Therefore,
we expect Cliffhanger to achieve overall throughput better
than the static baseline but worse than Midas.

Figure 6 shows the results. The top figure presents the
overall throughput of four systems normalized to the ideal
value. The bottom figure presents soft memory usage; we leave
out the usage of the overprovisioning baseline as it is much
higher (67.5 GiB) than the amount of idle memory (20 GiB).
Midas’s overall throughput converges in around 20 minutes
and achieves 75.0% of the ideal throughput by harvesting
98.0% idle memory. It also reduces SocialNet’s 99th percentile
latency by 58.4% from 5.5ms to 2.3ms. In contrast, the
static provisioning baseline only achieves 48.7% of the ideal
throughput and fails to improve SocialNet’s tail latency due to
the lack of coordination. It also uses 3.1 GiB less soft memory
than Midas as some microservices of SocialNet fail to fully use
their statically-provisioned soft memory budgets due to small
soft memory footprints. Cliffhanger uses a similar amount of
soft memory to Midas. Due to its coordination policy, it con-
verges on the overall cache hit rate (not shown due to the space
constraint) but oscillates in terms of the overall throughput.
Therefore, it only achieves 56.0% throughput on average.

Figure 7 presents the per-application soft memory usage
of Midas and Cliffhanger. For each application, the gray line
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represents the soft memory budget it receives, while the color-
ful line represents the amount of soft memory it uses. Because
of the difference in their coordination policies, Midas and
Cliffhanger make very different allocations of soft memory be-
tween applications except for the storage server. For example,
since it is time-consuming to reconstruct HDSearch’s objects
(as it involves recomputing the feature vectors of images), Mi-
das scales up HDSearch’s soft memory to cache more objects.
However, since HDSearch has a relatively low request skew-
ness (compared to other applications) and consequently a lower
cache utility (in terms of hit rate), Cliffhanger deprioritizes
it by scaling down its soft memory, significantly impacting
its performance (and therefore the overall performance).

In summary, the experiment demonstrates that Midas can
efficiently utilize available memory as soft memory and
judiciously coordinate soft memory among applications,
achieving high overall performance close to the ideal one that
requires 3.4⇥ more memory.

7.2 Harvesting Available Idle Memory

In this experiment, we investigated whether Midas can quickly
and reactively harvest additional idle memory—whenever it
is available—to improve memory utilization and application
performance.

We ran an application using Midas and dynamically added
idle memory to the server. A good result for Midas would show
that it quickly detects any new idle memory and reactively
grants it to SocialNet as additional soft memory to improve
performance. Additionally, we expect that the marginal benefit
decreases as SocialNet uses more soft memory and caches
more hot items.

Figure 8 presents the results of SocialNet. The results of
other applications show similar trends and can be found in Ap-
pendix A. Initially, the server has 2 GiB idle memory (the dark
gray line). With Midas, SocialNet fully utilizes them as soft
memory (the blue line) and achieves 13 MOPS throughput (the
pink line). At t=5min, we added 4 GiB more idle memory to
the server. Midas immediately detects this change and rapidly
ramps up its soft memory usage; it only takes around 3 min-
utes for SocialNet to reach a new steady state. Benefiting from
more soft memory, SocialNet’s throughput increases by 46%
from 13 MOPS to 19 MOPS, and its 99th percentile latency
decreases by 27% from 5.5ms to 4ms (the light brown line). At
t=15min, we again added 4 GiB more idle memory. This time
we observed a reduced marginal benefit as SocialNet has al-
ready cached most hot items; it takes 15 minutes to reach a new
equilibrium (i.e., 8.5 GiB soft memory usage) and yields a 43%
improvement of 99th percentile latency (from 4ms to 2.3ms).

In summary, these results highlight Midas can quickly detect
idle memory and reactively scale up its soft memory usage
to improve memory utilization and application performance.
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1Figure 8: With Midas, SocialNet effectively harvests additional
idle memory by scaling up its soft memory usage, improving both
throughput and tail latency.
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1Figure 9: Under moderate memory pressure (t=5min-15min), Midas
is able to reactively scale down SocialNet’s soft memory usage to
avoid running out of memory with moderate performance impact.
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1Figure 10: Midas is able to avoid out-of-memory killing even under
extreme memory pressure (t = 5min and t = 10min). SocialNet
experiences brief throughput collapses and tail latency spikes but
quickly recovers to normal once the pressure is finished.

7.3 Reacting to Memory Pressure

In this experiment, we investigated whether Midas can quickly
react to memory pressure to avoid out-of-memory killing and
studied its impact on application performance.

Similar to §7.2, we ran SocialNet using Midas, but
dynamically decreased the server’s idle memory with a
colocated memory antagonist. We measured the impact on
SocialNet’s soft memory usage and performance.

Under moderate memory pressure, ideally, Midas’s global
coordinator should reactively unmap free soft memory
segments while Midas’s evacuator should be able to replenish
them (by evicting cold objects and evacuating hot objects)
to match the coordinator’s unmapping rate. A good result for
Midas would show that SocialNet’s throughput degrades gradu-
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ally and mildly as the pressure persists, since Midas prioritizes
the eviction of cold and dead objects over hot objects.

Under intense memory pressure, we expect the coordinator
to also unmap the used soft memory segments as the evacuator
cannot keep up with the high unmapping rate. In this case,
SocialNet may experience a sudden throughput collapse due
to the loss of hot objects. However, a good result for Midas
would show that SocialNet is still able to operate without expe-
riencing any out-of-memory killing. In addition, immediately
after the pressure is finished, SocialNet’s performance should
be able to recover to normal by reconstructing back hotter
objects and evicting colder objects.

Figure 9 presents the results under moderate memory
pressure. Initially, the server has 10 GiB soft memory. The
application uses around 9.6 GiB of it as soft memory and
achieves around 20 MOPS throughput and 2.3ms 99th

percentile latency. At t=5min, the memory antagonist starts to
allocate 8 GiB more memory at a moderate rate of 0.8 GiB/min,
resulting in the decrease of idle memory until t =15min. As
shown by the bottom figure, Midas is able to reactively scale
down SocialNet’s soft memory usage through reclamation
to avoid running out of memory. As shown by the top figure,
SocialNet’s throughput and 99th percentile latency remain un-
affected in the beginning, as Midas prioritizes the reclamation
of cold soft memory. After running below 5 GiB idle memory,
SocialNet experiences a mild throughput drop and latency
increase, as Midas starts to reclaim hotter soft memory.

Figure 10 presents the results under intense memory
pressure. In this case, the antagonist allocates memory as fast
as Linux permits (7 GiB/s), making it an extremely challenging
case to handle. Despite the high rate, Midas is still able to avoid
out-of-memory killing by rapidly scaling down SocialNet’s
soft memory usage. In this case, Midas has to unmap the used
soft memory segments, inevitably causing brief throughput
collapses and latency spikes (at t = 5min and t = 10min).
However, once the memory pressure is finished, SocialNet’s
throughput and latency quickly recovers to the normal level,
consistent with the numbers reported in Figure 8 and 9.

The results of other applications also show similar trends
(see Appendix B). In summary, these results demonstrate that
Midas can always quickly react to memory pressure to avoid
out-of-memory killing while maintaining good application
performance whenever it is possible.

7.4 Design Drill-Down
Soft Pointer Dereference Cost. We measured the latency of
dereferencing a soft pointer and compared it to the latency of
dereferencing an ordinary C++ unique_ptr, when the pointer
and data pointed to are originally in memory (i.e., not in CPU’s
cache). Table 2 shows the results of small objects (32 B) and
large objects (4 MiB), and Appendix D has more results of
other object sizes.

For small objects that fit into CPU’s cache line (Table 2a),
Midas is able to deliver comparable read latency as its extra

[read|write] Average Median P90
Latency (cycles) read/write read/write read/write

C++ unique_ptr 367 / 199 382 / 176 510 / 332
SoftUniquePtr 400 / 393 370 / 368 516 / 500

(a) Small objects (32 B).

[read|write] Average Median P90
Latency (Mcycles) read/write read/write read/write

C++ unique_ptr 0.97 / 1.39 0.94 / 1.36 0.99 / 1.37
SoftUniquePtr 1.77 / 1.15 1.75 / 1.14 1.77 / 1.18

(b) Large objects (4 MiB).
Table 2: Midas’ soft pointer only adds moderate dereferencing cost
compared to C++’s ordinary smart pointer.

Live Object Ratio 10% 30% 50% 70% 90%

Reclamation Cooperative 312.5 243.1 173.6 104.2 34.7
Tput. (MiB/s) Direct 8268.5

Table 3: Midas’s cooperative reclamation reclaims memory at the
throughput of 35 MiB/s-313 MiB/s, depending on the live object ratio
of soft memory. Midas’s direct reclamation trades off reclamation
quality for faster speed; it achieves a throughput of 8269 MiB/s,
exceeding the rate at which the Linux kernel can allocate memory.

object copying overhead is negligible. Midas achieves higher
write latency (< 200 cycles) as it has to additionally update
the metadata in the object header.

For large objects (Table 2b), Midas achieves ⇡800K cycles
(82%) higher read latency since now the additional object copy-
ing happens in memory (rather than in CPU’s cache). However,
Midas achieves lower write latency than unique_ptr thanks
to its optimized memory copy implementation.
Memory Reclamation Speed. We measured Midas’s memory
reclamation throughput using a synthetic microbenchmark.
Under moderate memory pressure, the coordinator reclaims
memory with the cooperation from the runtime (Figure 9); we
refer to it as cooperative reclamation. Under severe memory
pressure, the coordinator directly unmaps soft memory
segments (Figure 10); we refer to it as direct reclamation.

Table 3 presents the throughput of both reclamation
methods. The speed of cooperative reclamation depends on
the live object ratio of soft memory; the lower the live ratio,
the easier to make room by compacting hot objects, thereby
yielding faster reclamation speed. It achieves a throughput of
313 MiB/s under 10% live ratio and 35 MiB/s under 90% live
ratio. To handle intense memory pressure, direct reclamation
trades off reclamation quality for faster reclamation speed;
it achieves a significantly higher throughput of 8269 MiB/s,
unrelated to the live object ratio. This exceeds the rate at which
the Linux kernel can allocate memory (7-8 GiB/s measured
in our machine), therefore Midas can always safely harvest
server’s idle memory without leading to OOM killing.
Performance Impact of Data Reconstruction. To examine
the performance impact of using soft memory, we conducted
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Figure 11: Midas’s efficiency (y-axis) as a function of data
reconstruction cost normalized to the ideal throughput of caching
all soft state. Midas’s efficiency increases as the reconstruction cost
decreases, delivering >80% efficiency for applications with <1024
µs/object reconstruction cost when caching 80% of soft state.

an experiment using a synthetic application; we measured
its performance with varying data reconstruction costs under
different soft memory ratios (i.e., the ratio of cached soft state).
Intuitively, the cheaper the data reconstruction, the lighter the
performance impact it incurs.

Figure 11 shows the result. When the soft memory ratio
is 20%, Midas is able to deliver >80% efficiency when the
reconstruction cost is <128 µs/object. When the soft memory
ratio is higher, Midas can tolerate a higher cost as reconstruc-
tion happens less frequently; thus, it is able to provide >80%
efficiency for applications with <256 µs/object reconstruction
cost under 50% memory ratio and <1024 µs/object under
80% memory. This suggests that Midas can still achieve high
performance with moderate data reconstruction costs.

8 Related Work

Resource Harvesting and Deflation. Datacenters today
suffer from low resource utilization [6, 17, 50]. To make use
of vacant resources, major cloud providers now offer spot
VMs [5, 20, 31], which run at a low priority and get evicted
under resource pressure. Others propose new VM designs to
gracefully adjust VMs’ resource usage. Harvest VM is a new
type of VM that grows and shrinks according to the amount
of unallocated resources at its underlying server, including
CPU [6], memory [17], and storage [38]. Similarly, deflatable
VM [45] codesigns the hypervisor, VM, and the application to
reclaim resources from applications under memory pressure.
These approaches focus on VMs only, and take minutes to
re-configure a VM to release resources.
Resource Disaggregation and Remote Memory. Resource
disaggregation and remote memory systems are another
trending approach for improving utilization, thanks to faster
datacenter networking [19, 26, 29]. Their key idea is to
break the server hardware boundary with a fast network
interconnection to exploit stranded resources on a remote
server. Various systems have established the viability of
disaggregated storage [22, 24], accelerators [35, 51], and
memory [4, 21, 44, 54]. While some provide remote memory
transparently via OS paging, it is also possible to use a library-
based approach that modifies the application to bypass the

OS. AIFM [40] proposes remote-able data structures to build
remote-memory-aware applications. Semeru [52], Mako [28],
and MemLiner [53] co-design the JVM with the kernel to offer
transparent remote memory for Java programs. Like Midas,
these systems adopt customized pointer formats for their
remote-able objects. Unlike Midas, they do not consider the
unmap-and-reconstruct semantics and suffer from swapping
or out-of-memory killing under intense memory pressure.
Cache Services. Improving cache performance is important to
datacenter applications, especially in a shared setting [10, 36].
Fairride [36] and RobinHood [10] provide fair and latency-
aware cache-sharing policies, and CliffHanger [13] uses a hill
climbing method to incrementally optimize cache allocation
across applications. Memshare [14] further improves the
cache partitioning with a log-structured allocator for higher
hit rates. However, existing cache service systems still rely
on static memory allocation, and cannot efficiently use idle
memory. CacheLib [9] provides a library-based approach for
caching, but it again relies on static provisioning and lacks
global coordination, hindering its ability to manage memory
across multiple applications.
Cooperative Memory Revocation. In parallel with our work,
researchers are also exploring the benefits of soft state by
managing it at the application level [16]. Midas instead uses
kernel coordination and unmap-and-reconstruct semantics,
which enables it to reclaim pages even if applications do not
cooperate or are slow to respond. This makes it possible to react
to severe memory pressure without running out of memory.

9 Conclusion

In this paper, we presented Midas, a system that efficiently
and safely harvests idle memory to store the soft state
that is most beneficial to each application, improving both
memory utilization and application performance. Midas
provides familiar high-level programming abstractions and
maximizes overall performance through coordination between
an application-integrated runtime and a global coordinator.
Our evaluation demonstrates that Midas is able to effectively
use soft memory to achieve near-optimal performance and
can respond to extreme memory pressure fast enough to avoid
running out of memory.
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A Harvesting Available Idle Memory
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Figure 12: With Midas, applications can reactively scale up their
soft memory usage to harvest additional idle memory and improve
performance.

In this section, we evaluated the other three applications
individually under the same setting as in §7.2 to show how
Midas can harvest available idle memory to improve memory
utilization and application performance. Figure 12 presents the
results. Similar to Figure 8, Midas can quickly detect any idle
memory and reactively grant it to the application to improve
its performance. As applications expose different allocation
speeds and utilities of their soft state, the average time to scale
up the soft memory usage as well as the performance gain
also varies across applications. HDSearch takes longer to fully
utilize the additional soft memory because it needs expensive
GPU computations to re-construct a cache-missed object. It
also enjoys higher throughput increases by memoizing com-
putation results with additional soft memory. On the contrary,
both WiredTiger and storage server can quickly utilize all ad-
ditional soft memory, but they only get marginal performance
improvement after caching most hot blocks at t=10min.

B Reacting to Memory Pressure
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Figure 13: Under moderate memory pressure (t = 5min-15min),
Midas is able to reactively scale down applications’ soft memory
usage to avoid running out of memory while minimizing its impact
on their throughput.

In this section, we further investigated whether Midas can
quickly react to memory pressure by running the other three
applications individually under the same setting as in §7.3.
Similarly, we measured memory utilization and application
throughput under moderate memory pressure and intense
memory pressure, respectively.

Figure 13 presents the results of each individual application
under moderate memory pressure. Similar to Figure 9,
At t = 5min, the memory antagonist starts to allocate 10
GiB more memory with a moderate rate of 1.0 GiB/min,
leading to the decrease of idle memory until t = 15min. As
shown by the bottom figure, for all three applications, Midas
reactively scaled down their soft memory usage and avoided
out-of-memory killing. As shown by the top figure, application
throughput drops gradually and mildly as the reclamation goes
on and never experiences any severe disruption.

Figure 14 shows the results of each individual application
under intense memory pressure. Similar to Figure 10, the
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Figure 14: Midas is able to avoid out-of-memory killing even under
extreme memory pressure (t = 5min and t = 10min). The victim
application experiences brief throughput collapses but quickly
recovers to normal once the pressure is finished.

memory antagonist intensely allocated 5 GiB memory at
t=5min and t=10min. Despite the high memory allocation
rate, Midas is still able to rapidly reclaim application’s soft
memory and avoid running out of memory. Because Midas
has to unmap the used soft memory segments in this case, both
WiredTiger and Storage server experience brief throughput
collapses. However, once the memory pressure is finished,
their throughput can quickly recover to the normal level,
consistent with the numbers reported in Figure 12 and 13.
HDSearch has a relatively lower request rate, therefore it is
more tolerable to the enforced soft memory unmapping and
does not experience severe throughput collapse at all.

C SocialNet Microservices Memory Usage

We have reported the overall soft memory usage of SocialNet
in Figure 7. Among SocialNet’s 12 microservices, two mi-
croservices used the most soft memory, namely UserTimeline
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1Figure 15: Memory usage of two major microservices in SocialNet.
Midas dynamically coordinates memory between the microservices
to achieve high memory utilization and optimal performance for
SocialNet.

and PostStorage. Figure 15 reported the detailed memory
usage for each of them.

UserTimeline is the frontend microservice that handles
user requests. It fetches a group of user posts from the storage
backend and composes them as a timeline webpage. It caches
composed user timelines in soft memory to reduce backend
storage accesses. PostStorage is the backend database mi-
croservice that stores user posts. It handles post requests from
UserTimeline with MongoDB and caches hot posts using soft
memory. As shown in 15, at first, Midas reactively grants soft
memory to both microservices to quickly recover SocialNet’s
throughput and latency. As UserTimeline gets more soft mem-
ory, it caches more hot timelines and consequently reduces
its request rate to PostStorage. At t=8min, Midas’s profiling
reveals that PostStorage is no longer frequently accessed and
therefore has relatively low cache utility, so Midas reactively
scales down PostStorage’s soft memory. At t=20min, Social-
Net reaches a new equilibrium, where UserTimeline consumes
most of the soft memory budget and PostStorage only keeps
a small portion of soft memory. Cliffhanger, in contrast, only
profiles the cache hit rate of each microservice regardless of
their cache access rate and performance sensitivity. Therefore,
it continuously grants soft memory to PostStorage, resulting
in overprovisioning soft memory to SocialNet.

D Soft Pointer Dereference Cost

In this section, we reported the detailed results of soft pointer
dereference cost when reading and writing large objects in
various sizes and compared them with the cost of dereferencing
an ordinary C++ unique_ptr. Similar to Table 2, we measured
the P90 latency and throughput of accessing large objects
(Figure 16) in various sizes.

As shown in Figure 16, reading a large object whose size
is smaller than 512 KiB with Midas soft pointer has similar
latency and throughput compared to dereferencing a C++
unique_ptr, although dereferencing a soft pointer incurs an
additional memory copy. This is because the object and its
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1Figure 16: Midas’s soft pointer achieves similar performance com-
pared to C++’s ordinary smart pointer when objects can fit into CPU
L2 cache, and it only adds moderate dereferencing cost otherwise.

copy can both fit into the CPU L2 cache and hence the second
copy is fast. For all object sizes, soft pointer offers lower write
latency and higher write throughput than unique_ptr thanks
to Midas’s optimized memory copy implementation.
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