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Abstract

Maintaining low tail latency is critical for the efficiency and
performance of large-scale datacenter systems. Software bugs
that cause tail latency problems, however, are notoriously dif-
ficult to debug. We present LDB, a new latency profiling tool
that aims to overcome this challenge by precisely identify-
ing the specific functions that are responsible for tail latency
anomalies. LDB observes the latency of all functions in a run-
ning program. It uses a novel, software-only technique called
stack sampling, where a busy-spinning stack scanner thread
polls lightweight metadata recorded in the call stack, shifting
tracing costs away from program threads. In addition, LDB
uses event tagging to record requests, inter-thread synchro-
nization, and context switching. This can be used, for example,
to generate per-request timelines and to find the root cause
of complex tail latency problems such as lock contention in
multi-threaded programs. We evaluate LDB with three dat-
acenter applications, finding latency problems in each. Our
results further show that LDB produces actionable insights,
has low overhead, and can rapidly analyze recordings, making
it feasible to use in production settings.

1 Introduction
Modern datacenter services like search, social networks, and
DNN training operate on huge datasets with complex com-
munication patterns and large numbers of servers [17, 28].
Tail latency is a key challenge in this setting because overall
performance is often limited by the slowest response [22]. De-
spite the tremendous effort that goes into optimizing latency-
sensitive programs, operators tend to treat high tail latency
as inevitable due to the complexity of deployed programs.
Therefore, the main method available to operators today is
to keep machine utilization low to control for tail latency,
wasting both power efficiency and money.

In this paper, our aim is to empower developers to tackle
tail latency problems head-on by answering the following
question: Can a debugging tool identify the precise source
of tail latency experienced by a request in a server (e.g., the

line of code that is responsible)? This is a significant chal-
lenge, as the effort needed to understand tail behaviors is
formidable with the tools that exist today. Statistical profilers
(e.g., Linux’s perf-tool), for example, have only limited util-
ity because their method of periodic sampling captures the
average runtime of functions, which may deviate significantly
from the tail runtime. Further, they don’t account for request
semantics, so they cannot differentiate between requests run-
ning on the critical path versus the background, making it
hard to identify bottlenecks. Instead, developers commonly
hand instrument code locations that they suspect are problem-
atic, but they can only try a few locations at a time due to
instrumentation overhead. Thus, a typical workflow involves
multiple iterations of instrumentation location adjustment,
deployment, and data collection.

One way to avoid this tedious process would be to use a
tool that can instrument all functions simultaneously (e.g.,
XRay [18]). However, this approach causes significant over-
head that can distort an application’s behavior. A less invasive
option would be to use hardware assistance. For example,
Intel recently introduced a hardware extension called Intel
Processor Trace (Intel PT) that records every control flow op-
eration (calls, branches, jumps, etc.) to an in-memory log for
analysis. NSight recently demonstrated that Intel PT can be
used to derive rich tail latency insights, such as a precise time-
line of how cycles are spent handling network requests [26].

Unfortunately, Intel PT has drawbacks that make it difficult
to use for profiling latency in practice. First, Intel PT is pro-
prietary and requires hardware support, so it is only available
on certain platforms. Second, Intel PT generates data at an
enormous rate, so it is only feasible to record a few seconds
of samples. Finally, Intel PT’s compression scheme requires
a software decoder that walks a program’s object code to
reconstruct its control flow. This requires several hours of
processing—even for a few seconds of data—prohibiting in-
teractive profiling.

We present LDB, a new latency debugging tool that pro-
vides unprecedented visibility into the latency behavior of
applications. LDB reports the distribution of the latency of all



1 std::mutex lock;
2 std::map<int, std::string> db;
3

4 void snapshot() {
5 std::ofstream out("snapshot.txt");
6 std::lock_guard<std::mutex> g(lock);
7 for (const auto& kv : db)
8 out << kv.first << "," << kv.second << std::endl;
9 out.close();

10 }
11

12 void background_thread() {
13 while (true) {
14 snapshot();
15 usleep(10000);
16 }
17 }
18

19 void request_handler(int key, std::string& value) {
20 std::lock_guard<std::mutex> g(lock);
21 db[key] = value;
22 }
23

24 int main() {
25 std::thread bg_thread(background_thread);
26 for (int i = 0; i < kRounds; i++) {
27 int key = std::rand() % dbSize;
28 std::string value = generate_random_string();
29 request_handler(key, value);
30 }
31 }

Figure 1: example.cc: a simple multithreaded program where
a foreground thread handles user requests and a background
thread snapshots program state every 10 ms.

functions in a process. Furthermore, it allows developers to
breakdown the latency faced by a specific request, even when
processed by multiple threads, allowing them to zoom in and
identify the code responsible for anomalous behavior. LDB
provides this information after only seconds of decoding its
own traces and without significantly harming the performance
of the profiled program, enabling monitoring in production
environments. In contrast to Intel PT, LDB is hardware ag-
nostic. In principle, it can be ported to any architecture, and
we demonstrate its use on Intel and AMD processors.

The efficiency and portability of LDB stem from a novel,
software-only technique, called stack sampling. Unlike prior
approaches, stack sampling doesn’t record per-function times-
tamps (e.g., the output of the RDTSC instruction [18, 35]). In-
stead, a separate stack scanner thread polls the call stack of
every application thread. During each polling cycle, the stack
scanner thread performs a backtrace on each call stack to in-
spect changes to stack frames. Intuitively, a function’s stack
frame will be resident on the call stack until the function re-
turns, so the higher its execution time, the longer its stack
frame will remain resident. LDB exploits this to capture the
runtime of all the functions that contribute meaningfully to
latency (i.e., those that last longer than its sub-us polling in-
terval).

While stack sampling is based on a simple premise, we had

to overcome several challenges to make it work in practice.
First, it is not possible for one core to access another core’s
stack pointer register, so we had to find an alternative way to
locate the deepest stack frame. Second, there is not enough
information available in stack frames to discern between re-
peated invocations of the same function so we had to find a
way to detect them. Third, the stack scanning thread could
race with application threads causing it to observe corrupted
stack frames, so we had to develop a mechanism to detect
and discard bad samples. Finally, backtracing can cause false
sharing with variables on the call stack, negatively impact-
ing application performance, so we needed a way to limit
this overhead without sacrificing resolution. We discuss our
solution to each of these problems in §3.2.

In addition to efficiency improvements, LDB provides bet-
ter visibility into latency problems through event tagging,
recording several types of events with timestamps and event-
specific metadata. Examples include the start and end of re-
quests; cross-thread interactions like locks; and the transfer of
request ownership among threads. This allows LDB to track
the timeline of each request and correlate this information
across multiple threads. For example, LDB can identify a slow
function running inside a critical section that is protected by
a lock, and then tie it back to a request that is blocked in
another thread waiting to acquire the same lock. LDB also
uses event tagging to track context switching, allowing it to
identify delays from the OS scheduler.

We demonstrate the value of LDB by profiling two latency-
sensitive applications (Memcached and Lucene) and a best-
effort application called Qperf, which is a benchmark for the
QUIC transport protocol. We show that LDB can detect com-
plex interactions between threads and identify which func-
tions are responsible for impacting performance (both latency
and throughput). Then, we provide an evaluation of the per-
formance overhead of LDB when used to profile these three
applications. In particular, we show that the overhead of LDB
is less than the overhead of Coz and Xray; and comparable to
Intel PT on recent Intel architectures. LDB maintains its low
overhead across Intel and AMD architectures. On the other
hand, the overhead of Intel PT is considerably higher when
used on older Intel architectures.

LDB has some limitations. First, it can’t yet capture hard-
ware interrupts and some other types of traps into the kernel,
which could contribute to tail latency. Second, LDB requires
programs or libraries to be recompiled to support stack sam-
pling, so it cannot trace latency inside unmodified binaries
or libraries. Finally, if one chooses not to annotate requests
in the source code (typically just a few lines), LDB cannot
capture information about request latency, but it can still de-
liver statistics about the latency of each line of code, which is
enough for debugging many tail latency problems.

LDB is available as open-source software at https://
inhocho89.github.io/ldb/.

https://inhocho89.github.io/ldb/
https://inhocho89.github.io/ldb/


Figure 2: A timeline visualization of the time spent in each
function during the longest request. The longest request starts
at 0 ms and finishes at 12.75 ms. The thread on the top is the
mutex holder, while the thread on the bottom is the request
handler, which is blocked waiting to acquire the mutex.

2 Background and Motivation
2.1 Debugging a Tail Latency Problem
Consider the example shown in Figure 1, based on a pattern
found in many real programs. A request processing thread and
a background thread require synchronized access to the same
data. The request processing thread responds by executing
request_handler(), which inserts items into a std::map.
Concurrently, the background thread takes a snapshot of the
std::map every 10 ms. Access to the std::map is serialized
through a std::mutex. As a result, the 99.99th percentile
latency of the request_handler() function is 10 ms while
its median is 244 ns (a 40,000× increase)!

This is a challenging issue to debug because of the rare
interaction between the two threads. LDB, however, can eas-
ily identify the root cause. It captures everything that hap-
pened in the program and can generate a timeline visualiza-
tion for each request that includes all the involved threads. By
plotting the timeline of the longest request (Figure 2), it be-
comes clear that the snapshot thread (shown on top) delayed
request_handler() (shown on bottom) by holding the mu-
tex it was trying to acquire. This suggests that tail latency can
be improved by optimizing snapshot() or reducing the size
of its critical section.

However, existing profilers struggle to debug tail latency is-
sues like these. For example, Figure 3 shows the output of perf,
one of the widely used performance debugging tools. The ma-
jority of time is spent in generate_random_string() and
other functions under request_handler(). snapshot() ac-
counts for only 0.6% and was buried under other 13 functions.
This result reveals three interesting problems of using perf
for tail latency debugging. First, tail behavior is amortized, so
it gets buried down under average behaviors. Second, perf is
measuring where the CPU cycles go, not how long each func-
tion takes, so it is unable to show the time spent on blocking
I/O or synchronization. Figure 2 suggests that snapshot()
runs for over 10 ms and then sleeps for 10 ms, so it should
account for at least about 50% time on average. However,
much of the time spent on snapshot() is spent blocking on
I/O, so perf reports only 0.62%. Lastly, perf cannot capture
the interplay across threads caused by the mutex.

Function CPU Time ▽
generate_random_string 63.75%
request_handler 7.43%
std::_Rb_tree_increment 2.82%

...(13 more functions)...
snapshot 0.62%

Figure 3: Perf’s output with the example application.

2.2 Intuition and Challenges
We observe that the metadata in x86 stack frames (e.g., the
number of stack frames, return instruction pointers, saved
based pointers, etc.) remains unchanged as long as a thread
is executing a bottlenecked function. LDB takes an approach
in which a separate dedicated busy-running thread, called the
stack scanning thread, periodically scans these stack frames.
It then measures the latency of the function call by examining
whether the metadata in the stack frame metadata does not
change. If a change is detected in the metadata, it signifies
that a function has either returned or that a new function call
has been invoked.

The realization of this stack sampling idea entails the fol-
lowing challenges:

1. Finding the deepest stack frame. Stack frames form a singly
linked list data structure. Starting with the most recent (deep-
est) stack frame, one can traverse the entire call stack by
following the saved base pointers. This traversal is necessary
for LDB to ascertain whether the stack frame metadata has
been modified or not. The location of the deepest stack frame
can be retrieved from the RBP register. However, threads
other than the application thread itself cannot access this reg-
ister, making it challenging for the stack scanning thread to
determine where to start traversing the stack frames.

2. Differentiating stack frames for different function calls.
When the same function is repeatedly invoked from the same
line of code (such as within a loop), the metadata may remain
identical across samples of the stack frames. This can lead to
an overestimation of the function call latency measurement
performed by the stack scanning thread, as it may fail to detect
that there were separate invocations to the same function.
Therefore, to accurately measure the latency of individual
function calls, it is necessary to find a way to differentiate
between stack frames from distinct function calls, even if their
stack frame metadata appears to be the same.

3. Cache thrashing and false sharing. Stack frames are fre-
quently accessed by the application thread for local variables.
If the stack scanning thread accesses stack frames too often, it
may lead to performance degradation because of cache thrash-
ing and false sharing. Repeated access to stack frames by the
stack scanning thread can cause the data to be continually
invalidated from the application thread’s cache, harming the
performance of the monitored application.

4. Data race for the stack frames. While the stack scanning
thread is traversing the stack frame, the stack frame can be
concurrently modified by the application thread when a func-
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Figure 4: The flow of events that are recorded by LDB.

tion returns or a new function is called. This data race can
result in the stack scanning thread collecting incorrect data
(e.g., a half updated frame), which leads to inaccurate mea-
surement of function latencies. For precise latency measure-
ment, we need a way to detect and gracefully handle such
data races, ensuring the integrity of the data collected by the
stack scanning thread.

3 System Design
3.1 Overview
Our objective is to create a lightweight, portable latency pro-
filing tool that can capture fine-grained information about
the time spent in each function in a program. Thus, the per-
function cost has to be minimal. We achieve this through
two key ideas. First, we use a separate busy-polling core to
shift away the instrumentation cost that would normally be
incurred inside program threads, such as timestamping and
recording events to memory. Second, we reduce the trace data
generation rate by recording only functions with stack frames
that are resident on the call stack for longer than the polling
interval. Intuitively, very short functions do not contribute to
latency, so it is okay to not spend resources in capturing them.

Building upon these ideas, we propose a new technique,
called stack sampling, where a stack scanner thread repeatedly
scans the call stacks of application threads. By observing the
persistence of stack frames across multiple scans, the stack
scanner thread can estimate each function’s invocation latency.
These invocation latencies can then be integrated with other
event sources (e.g., acquiring a mutex, starting to process a
request, spawning a thread, etc.) that are tagged with metadata
and synchronized timestamps. This enables greater visibility,
such as capturing locking interactions across threads.
Event recording. Figure 4 shows how different types of
events are tagged and recorded by LDB. LDB has three main
components that generate events. First, a stack scanner, which
runs in a busy-polling thread, scans application threads’ call
stack and records invocation latencies each time a function
returns. Second, a shim layer intercepts common threading
operations (e.g., pthread_mutex_lock()) and records an
event before forwarding the operation to its underlying im-
plementation. Finally, application threads can generate events
directly when they are annotated by the programmer, such
as the start and end of a request. LDB records all events to
per-thread shared-memory queues to improve scalability. An
event logger, running in a separate thread, then gathers the
events and stores them to disk for later analysis. Separately,
the existing OS performance monitoring subsystem can be
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used to record scheduling events (not shown in the figure)
like context switches and thread migrations [13]. Our design
is extensible, and we plan to add additional event sources in
the future, such as recording delays caused by interrupts.

3.2 Stack Sampling
Compiler instrumentation. Similar to many profiling
tools [18, 21, 30, 33], LDB relies on compiler instrumenta-
tion that inserts small, low-overhead changes to the function
calling conventions, which enables lightweight latency pro-
filing even without application modification. First, the com-
piler emits a frame pointer for each stack frame. Normally,
most compilers optimize away frame pointers, but they are
needed by the stack scanner to backtrace the call stack. While
functions can be identified using the return address saved on
the stack frame, this value doesn’t allow us to differentiate
between multiple invocations of the same function. This dif-
ference is critical for latency debugging, as we care about
the per-invocation latency on each function, not aggregate
measures like CPU time. To resolve this problem, LDB uses
generation numbers to differentiate different function invo-
cations. If a generation number is different in an otherwise
identical stack frame, LDB knows that it was a separate invo-
cation. The compiler appends a generation number to each
stack frame. The generation number is a monotonically in-
creasing number, derived by incrementing a word stored in
thread-local storage (TLS). Finally, the compiler records the
frame pointer of the deepest stack frame (i.e., RBP register
value), also placing it in TLS. The use of TLS avoids cache
contention between application threads, allowing LDB to
scale well across cores.
Sampling the stack. Figure 5 illustrates how the stack scan-
ner samples the call stacks of application threads. The stack
scanner runs as a separate thread in the same process as the
application, allowing it to share its address space. The stack
scanner maintains a table of the application threads that are
currently running ( 1 ). For each application thread, it fetches
the frame pointer of the deepest stack frame by reading from
its TLS region, ( 2 ) and starts scanning the call stack ( 3 ).



It traverses all the stack frames up to the main function by
following the stack frame pointers ( 4 ). While traversing the
call stack, it collects each generation number, which is located
at a fixed offset from the current frame pointer, along with the
return address of the stack frame.
Latency calculations. When the stack scanner collects infor-
mation from the call stack, it updates its scan records, which
are a table of metadata for each stack frame ( 5 ). If the scan-
ner detects a new stack frame, it creates a new scan record
and records the current timestamp and generation number. If
an existing scan record’s stack frame is not found during the
new scan, LDB concludes that the function has returned and
generates the FUNCTION event with the generation num-
ber, latency, and return address ( 6 ). It then removes the scan
record. We now discuss the various enhancements we made
to this basic procedure to address validating stack frames,
avoiding race conditions, and minimizing probing effects.
Validating stack frames. Another challenge is in identifying
valid stack frames. For example, even a program compiled
using LDB’s compiler may still be linked against a library
that does not contain LDB instrumentation. Thus, some stack
frames may not have valid generation numbers. To detect this,
LDB reserves an eight bytes space in the stack frame, called
a canary. The canary contains a known magic value that the
stack scanner looks for before parsing the generation number.
If it is missing, latency is not reported for that function, but
any parent functions that have the canary will still be reported.
To avoid pursuing invalid stack frames, LDB stops traversing
when the canary in the current stack frame is invalid, or the
next base pointer is invalid. Thus, LDB is guaranteed to termi-
nate its stack traversal. Further, it avoids segmentation faults
by validating whether a certain memory address is between
the start of the call stack (base pointer of the very first stack
frame recorded at thread start) and the end of the call stack
(latest RBP value in the TLS) before reading it.
Preventing data races. The application thread could race
with stack scanning if it calls or returns from a function while
the stack scanner thread is traversing the call stack. To avoid
collecting invalid samples, the stack scanner uses TLS data as
a sequential lock, a form of optimistic concurrency control [6].
Because the frame pointer changes with each function call or
return, and the generation number changes with each function
call, TLS data can be used to verify that the collected genera-
tion numbers are valid. The stack scanner compares TLS data
before and after each stack scan, and if they don’t match, it
discards the collected sample and tries again.
Reducing probing effects. Another potential concern is that
reading the stack could impact an application’s performance.
For example, if an application thread frequently modifies a
variable stored on its stack frame, and it lands in the same
cache line as a stack frame, this could result in false sharing
between the stack scanner and the application.

To prevent this, LDB uses TLS data to detect function
calls and returns, and initiates stack sampling only when they

occur. This avoids all false sharing during function execution.
The stack scanner supports this by polling the most recent
generation number stored in each TLS region, and waiting for
it to increase before sampling the thread’s call stack. The stack
scanner then proceeds with the scan, retrying if there was a
race condition (which is rare). Once it gets a valid sample,
it stops scanning until the next time the generation number
increases. The generation number is placed in a dedicated
cache line, allowing it to remain in the shared cache state.
Therefore, no coherence traffic is generated while it is polled
(until it is modified). LDB also supports pausing the stack
scanner between probes (e.g., delaying for 1 µs). However, we
found that the above technique allows LDB to poll in a tight
loop with negligible probing effects and better resolution.
Security. As the stack scanner shares the address space with
the application thread, the application may be at threat if the
stack scanner is compromised. In this paper, we assume that
the LDB compiler and library are not compromised and will
undergo a thorough security review.

3.3 Tracing Cross-thread Request Handling
LDB analyzes cross-thread interaction with three types of
events: request events, synchronization events, and schedul-
ing events. Each event is timestamped and included in the
trace. The time duration between two events (e.g., waiting for
and acquiring a lock) along with other functions that happen
between the two events, help construct a rich timeline. To
minimize the extra latency required for event logging, each
event is recorded to a per-thread circular event buffer. Then,
the events in the event buffers are polled by the event logger
which persists the events to disk.
Request events. For multi-threaded applications, it is hard to
figure out which threads are responsible for high tail latency.
To enable per-request tracing with a multi-thread environ-
ment, LDB provides an API for developers to annotate when
a thread starts and finishes handling a request. Using request
annotations, LDB constructs the timeline for a specific re-
quest showing the interaction between the threads handling
the same request and revealing which threads contribute to a
long request processing time. In particular, all function invo-
cations in a thread that happen between a REQ_START and a
REQ_END are counted towards the timeline of the processing
of that request. Request tagging is optional, but the more the
application developers tag events including when a request is
temporarily placed in a queue (i.e., REQ_BLOCK), the more
accurate timeline LDB can construct.
Synchronization events. Contention for shared resources can
be a major source of latency. Visibility into synchronization
events (i.e., mutex wait, mutex acquire, and mutex release)
can play a key role in identifying performance bottlenecks in
the presence of cross-thread interactions. Mutex events reveal
not only which mutex is contended and how long it delays
a request but also which function the mutex holder thread is
executing while holding the mutex. For mutex events record-
ing, LDB interposes synchronization library functions (e.g.,



pthread mutex) and generates the corresponding mutex events.
We discovered recording every mutex event can introduce
extra overhead, especially for mutex-intensive applications.
To minimize this overhead, LDB decides whether it should
record mutex events outside of the critical section after releas-
ing the mutex. If either mutex wait time or lock time exceeds
MUTEX_EVENT_THRESH (1 µs by default), it records the
mutex event in the event buffer.
Scheduling events. The operating system scheduler can con-
tribute to request latency through context switching between
applications or threads. Revealing the delay caused by context
switches can guide the developers to look at operating system
configurations, not the application, to improve latency. Un-
like other types of events, LDB collects the scheduling events
from an external source. In particular, we collect scheduling
information with perf-sched for Linux. LDB timestamps
the events with the same clock source as the external tool to
generate a unified timeline.

3.4 Analysis Script
LDB provides an analysis script to generate per-function
statistics for collected latency samples. Further, it provides
another analysis script that constructs a timeline of specific
requests with function names and line numbers if request tags
are given. It stitches together the events generated by appli-
cation threads (i.e., request and synchronization events), the
stack scanner, and the OS scheduler (i.e., scheduling events).

Constructing the timeline for a specific request, identified
by its request ID, requires stitching together all events that oc-
curred during the processing of that request. Such a timeline
can have multiple components, requiring the script to make
multiple passes over the data generated by the profiler. First,
the script looks through the event log until it observes the
REQ_START event with the request ID, indicating the arrival
of that request. The script tracks all FUNCTION events gen-
erated by the thread processing that request thereafter. Upon
reaching a MUTEX_WAIT event, if the thread experiences
non-negligible wait time (e.g., longer than 1 µs between the
MUTEX_WAIT and MUTEX_LOCK events), the script scans
the event log backward to identify the mutex holder thread by
searching for a MUTEX_LOCK event with the same mutex.
Once the thread holding the mutex is identified, the script logs
all FUNCTION events produced by that thread until it releases
the mutex. Then, the script continues logging FUNCTION
events by the original thread processing the request until it
finds a REQ_BLOCK, REQ_END, or REQ_END_ALL event.
The output of the script is a log of all events impacting the
processing time of the request, each event identified by (event
info, thread ID, start time, end time) tuple. Such information
can be easily visualized as shown in Figure 6.

4 Implementation
We implemented a prototype of LDB for the x86 architecture
and the Linux environment. Our implementation has three

components: 1) an extension to LLVM [32], called LLVM-
LDB, to instrument stack frames, 2) a stack scanner library
to poll the generation numbers and calculate latency values,
and 3) an API and bindings to pthread library to capture
request and synchronization events automatically. Our imple-
mentation integrates with the Linux performance monitoring
subsystem (perf-sched) to track context switches [13]. We
also developed scripts to parse and analyze the data recorded
by our tool. The core LDB tool is ≈900 lines of C code,
the scripts are ≈1,200 lines of Python code, and the changes
made to LLVM are ≈250 lines of C++ code. In this section,
we describe more implementation-specific details for LDB.

4.1 LLVM-LDB
Reserving TLS. We reserve two 8 B TLS variables (gener-
ation number and the latest RBP register value) at a fixed
offset from the TLS base address (FS base) with LLVM
ModulePass. We make sure that LDB TLS variables are in-
serted into the TBSS section after all the in-application TLS
variables are inserted so that LDB TLS variables are located
at a fixed offset from the FS base.
Stack frame instrumentation. We modified the sequence of
the function prologue and epilogue in the LLVM x86 backend.
In the function prologue, we reserve the 16 B space in a stack
frame by decrementing the RSP before the RBP is pushed
into the stack frame. After the RBP is updated to the current
RSP, we fill up the reserved stack space and update the TLS
variables. First, we increment the generation number in TLS
and copy it into the reserved space. Then, we set up the canary.
Finally, now that the stack frame is ready to be scanned, we
update the latest RBP in TLS to the current RBP register
value so that the stack scanner can start scanning from a
newly created stack frame.

In the function epilogue, we revert the instrumented oper-
ations in the prologue. First, before tearing down the stack
frame in the function epilogue, the compiler first updates the
latest RBP in TLS to avoid the current stack frame being
scanned while it is being destroyed by copying the saved
RBP in the current stack frame—which holds the RBP of
the parent stack frame—into the TLS region. After the saved
RBP is popped from the stack frame with a standard epilogue
sequence, RSP is incremented by 16 to destroy the reserved
space for LDB. In total, we add 9 instrumentation instructions
(7 in the prologue and 2 in the epilogue) which add less than
1 ns to each function call.
Thread instrumentation. We instrument the main function
to initialize LDB using LLVM ModulePass. The initializa-
tion allocates the shared memory and per-thread event buffer
before registering the main thread into the shared memory
with its thread ID, FS base address, and event buffer address.
Then, LDB launches the stack scanner thread and the logger
thread. To initialize a newly launched thread and clean up
the state before it exits, we interpose on pthread_create().
Before a newly created thread executes its original start rou-
tine, LDB allocates the per-thread event buffer and registers



the thread into the shared memory. After the original thread
start routine returns, it frees the event buffer and deregisters
from the shared memory so that the exited thread is no longer
scanned by the stack scanner.

4.2 The LDB API and Parameters
Request tagging API. LDB provides a way to annotate the
threads with the following C APIs:
void ldb_req_start(uint64_t req_id, void *queue=NULL);
void ldb_req_block(uint64_t req_id, void *queue);
void ldb_req_end(uint64_t req_id);
void ldb_req_end_all();

When a thread starts to handle a request, the thread can be
annotated with the request ID using ldb_req_start(). Op-
tionally, if a request is dequeued from a software queue, the
queue address can be specified. Multiple threads can be an-
notated with the same request ID with parallel processing,
and a single thread can be annotated with multiple request
IDs for batch processing. When a thread needs to enqueue a
partially executed request into the queue the thread can hand
off the responsibility of the request with ldb_req_block().
It indicates that the current thread is not responsible for the
request anymore, but the current thread or another thread will
resume processing the request later. If a thread finishes pro-
cessing a request, it can clear the annotated request ID with
ldb_req_end(). Alternatively, when a thread needs to clear
all the annotated request IDs to the current thread, it can use
ldb_req_end_all(). We decided to allow the programmer
to specify the request ID, so that it can be correlated at the
RPC level in coordination with other tools.

5 LDB Use Cases
To demonstrate the broad utility of LDB, we illustrates four
use scenarios: visualizing a timeline of a specific request, de-
bugging tail latency, debugging throughput, and studying the
latency of specific functions. We evaluate these use scenarios
with two latency-sensitive applications and one throughput-
oriented application:

1. Memcached is a multithreaded, latency-sensitive, in-
memory key-value store. We debug two different work-
loads: SET and GET. The SET workload exposes mutex
and memory-intensive code paths. Each SET request can
access a global lock, slabs_lock, multiple times to allo-
cate and free the memory and a hash table bucket lock,
items_lock, to update the hash table. Additionally, when
a Memcached memory is saturated, it may need to ac-
quire lru_lock to evict stale items. On the other hand, a
GET request only needs to acquire the items_lock before
fetching a value from the hash table.
We allocated 10GB of memory for Memcached and used
100 million keys, evenly distributing them across requests.
The value lengths are uniformly distributed between 4B
and 1024B. We use the default hash power, which auto-
matically grows based on the number of key-value pairs
inserted into the hash table.
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process_bin_update(c, extbuf) (proto_bin.c:992:17)
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Figure 6: Timeline of the request of the longest request process-
ing time in Memcached SET workload constructed by LDB.

2. Lucene is a multithreaded, latency-sensitive in-memory
search engine library [3]. Lucene’s processing time is
much longer than Memcached, helping us demonstrate
the value of LDB under a variety of conditions. We used
a dataset of 403,619 COVID-related tweets. Each client
generates single-term search queries based on the word
distribution in the dataset. For each search request, Lucene
first retrieves the list of document IDs from the Segments
data structure that maps a word to a list of document IDs.
Once the list of all relevant document IDs is retrieved, it
fetches the pre-computed score (relevance between the
document and the search query) for each document and
returns the top 100 documents with high scores. All shared
data structures are protected by a mutex, so multiple mu-
texes are acquired to serve each request.

3. Qperf [5] is a performance measurement tool for Quicly,
Fastly’s implementation of the QUIC protocol [31]. Unlike
the other two applications, it measures the highest possi-
ble throughput between a server and a client. To achieve
the highest throughput, we modified the original Qperf
implementation to busy-poll for incoming packets. This
application helps showcase the value of LDB when mea-
suring the average per-packet latency for each function,
by identifying functions that harm the average throughput
of the application. We use Reno as the congestion control
algorithm and enable generic segment offload (GSO).

To use LDB on the applications listed above, we compiled
the applications with LLVM-LDB. In addition, we inserted tag-
ging annotations at each code location where a thread starts
to handle a new request (Memcached and Lucene) or a new
packet (Qperf). These points were easy to identify, and only
required 2–4 LOC changes.

5.1 Reconstructing the Timeline of the Request
When the application tags each request with a unique request
ID, LDB can construct a timeline of any tagged request includ-
ing interactions with other threads, which has been expensive
with existing tools. Figure 6 shows an example timeline of
a request in the Memcached SET workload. We picked the
request with the longest request processing time we observed
during the initial slab allocation phase because it provides a
simple yet strong example of the value of LDB.

The detailed request timeline of LDB immediately shows
what slowed down the processing of the request, including



Function p50 p99 p9999 ▽
slabs_alloc()
ë pthread_mutex_lock(&slabs_lock)

< 1 13.57 22.00

do_item_unlink_nolock()
ë STATS_LOCK()

< 1 6.93 20.51

lru_pull_tail()
ë pthread_mutex_lock(&lru_locks[])

2.14 17.53 19.62

do_item_link()
ë STATS_LOCK()

< 1 14.64 19.50

item_unlink_q()
ë pthread_mutex_lock(&lru_locks[])

2.03 10.56 18.88

Figure 7: Latency statistics of top 5 functions (and its caller)
ranked by 99.99th percentile latency in Memcached SET work-
load. All numbers are in µs.

interactions with another request. When the request pro-
cessing thread starts to handle the request, it waits for the
slabs_lock mutex. LDB does not only tell the waiting time
for the slabs_lock but also helps identify the thread holding
the mutex and the function it’s executing. In this example, the
thread holding the mutex executes memset() while holding
slabs_lock. After the thread processing the request acquires
the lock, the dominant request processing time is spent execut-
ing memset() that took 645.7 µs. Such fine-grained tracing
helps identify the main culprit which is performing memset()
while holding the slabs_lock. This appears naturally in an
LDB trace but is nearly impossible to identify using any ex-
isting tool without considerable manual work.

5.2 Tail Latency Debugging
With Memcached and Lucene, we demonstrate that LDB can
list functions that contribute to high tail latency, giving an
insight as to how to improve their tail latencies. Note that
LDB can generate latency statistics per line of code (Figure 7-
9, 11) without request annotation.
For Memcached SET workload, Figure 7 lists the top five
tail-contributing functions of Memcached ranked by 99.99th
percentile latency. All five functions perform locking. Three
out of the five functions contend for global locks related to
memory management (slabs_lock) and statistics collection
(stats_lock). To fix the tail latency from the slabs_lock,
one could consider reducing contention by using a per-thread
cache [19] and by zeroing memory without holding the lock.
The stats_lock, on the other hand, could be fixed by either
not using a lock, which would reduce accuracy, or by main-
taining per-thread stats. Finally, the other two functions use
the per-slab class lock, which is required for updating the
LRU timestamp and evicting stale key-value pairs. To reduce
the latency, one could fine-tune the chunk size growth factor
(-f) based on the value length distribution.
For Memcached GET workload, Figure 8 shows that two
of the top five functions are from per-worker thread locks
(THR_STATS_LOCK). In Memcached, each network connec-
tion is assigned to one of the worker threads, but the re-
quests can be processed by any worker thread. While the
worker thread processes the request, it needs to acquire the
lock of the worker thread that owns the network connec-
tion to update the statistics counters. When there is a small

Function p50 p99 p9999 ▽
resp_finish()
ë THR_STATS_LOCK()

< 1 9.04 18.55

transmit()
ë THR_STATS_LOCK()

< 1 9.66 18.26

do_item_get()
ë assoc_find()

< 1 10.10 18.25

item_lock()
ë mutex_lock(&item_locks[])

< 1 10.12 17.19

resp_start()
ë memset()

1.00 10.28 17.00

Figure 8: Latency statistics of top 5 functions (and its caller)
ranked by 99.99th percentile latency in Memcached GET work-
load. All numbers are in µs.

Function p50 p99 p9999 ▽
IndexSearcher::search()
ë Scorer::score()

72.18 2,005 6,232

Norm::bytes()
ë IndexInput::readBytes()

657.7 1,690 4,899

boost::make_shared()
ë new()

30.59 61.60 78.61

SegmentReader::docFreq()
ë TermInfosReader::get()

< 1 57.05 61.59

TopDocsCollector::topDocs()
ë populateResults()

< 1 20.27 25.09

Figure 9: Latency statistics of top 5 functions (and its caller)
ranked by 99.99th percentile latency in Lucene workload. All
numbers are in µs.

number of connections compared to the number of worker
threads, or when the load is skewed to a subset of network
connections, the per-worker thread statistics lock can be con-
gested. The solutions mentioned above for stats_lock apply
here too. Another two of the top five functions are for the
hash table data structure (assoc_find() and per-bucket lock,
item_locks). When a hash collision happens in the hash
table, assoc_find() iterates over the bucket to find the item
with the same key while holding the item_lock. One should
consider initializing the Memcached with higher hashpower.

The last one is for memory operation to clear the allocated
memory for a response. Considering that a response buffer
will be overwritten with response data, one could consider
removing the memset() operation, but care must be taken to
avoid sending uninitialized data.
For Lucene workload, Figure 9 reports that the top two func-
tions dominate the tail request processing time. Once Lucene
receives a search query, it first fetches a list of document
IDs by binary searching Segments after reading Segments
in IndexInput::readBytes(). Once it has the list of doc-
ument IDs, it looks up the score (the relevance between the
query and the document) for each document and enqueues
the document ID with its score into the max heap tree in
Scorer::score(). In this case, a tail latency problem arises
because the most popular term in the dataset appears in 88,558
documents. Thus, Scorer::score() needs to iterate 88,558
times to look up the score and enqueue it into the max heap
tree, which can take 6.2 ms. To reduce this latency, one could
consider utilizing an increased level of parallelism [27]. That
is, if the length of fetched document ID is too long, the search



(a) Memcached SET (b) Memcached GET (c) Lucene
Figure 10: Latency reduction in request processing and end-to-end after applying patches that fix latency problems identified by LDB.

Function Avg. Latency ▽
send_pending()
ë send_dgrams()

29.63 µs

allocate_ack_eliciting_frame()
ë do_allocate_frame()

2.79 µs

encrypt_packet()
ë ptls_aead__do_encrypt()

2.41 µs

Figure 11: Top 3 functions (and its caller) ranked by the highest
average latency in Qperf workload. The average processing time
for 32 packets is 38.11 µs.

application could use multiple threads where each thread
fetches the score of a subset of document IDs.

The other three functions are less significant. The memory
allocation for reading the Segments with new() takes up to
79 µs, fetching the score of a document with get() takes up
to 62 µs, and popping the top 100 documents from the max
heap tree in populateResults() takes up to 25 µs.
Actionable Insights. To demonstrate that LDB provides ac-
tionable insights that developers can use to improve the la-
tency behavior of real applications, we patch Memcached and
Lucene using the output of LDB. We show both the request
processing time, revealing the improvement to just the part
of the application that LDB can profile, and the end-to-end
processing time, which includes other sources of tail latency
like the kernel network stack and the network fabric.

We patched Memcached to (1) preallocate the slabs to avoid
memory allocation while serving the request, (2) fine-tune
the object size of each slab to avoid contention in slab classes
by specifying minimum object size and adjusting chunk size
growth factor, and (3) convert global and per-connection stats
into per-thread stats. Figure 10 (a) and (b) show the improve-
ment in the request processing time and end-to-end latency
after applying the patch. Because multiple responses can be
batched before written to the wire, the improvement of end-
to-end latencies is larger than the request processing times at
some tail percentiles. The patch reduces the 99th percentile re-
quest processing time by 15% and 99th percentile end-to-end
latency by 8% for SET workload; 99th percentile request pro-
cessing time by 16% and 99th percentile end-to-end latency
by 3% for GET workload.

For Lucene, we patched it to add inter-request parallelism,
using four concurrent threads to serve each request. Figure 10
(c) shows the improvement in request processing time and
end-to-end latency with the patch applied. The increased par-
allelism hurts performance for short requests due to the strag-
gler effect, synchronization, and scheduling overhead, but

Function CPU Time ▽
__libc_recvfrom 7.61%
send_pending 4.11%
quicly_send 2.56%

... (39 more functions) ...
do_allocate_frame 0.28%

... (10 more functions) ...
ptls_aead__do_encrypt 0.20%

... (152 more functions) ...
send_dgrams 0.04%

Figure 12: Top 5 functions ranked by the highest CPU time in
Qperf workload reported by Linux perf.

achieves our overall goal of reducing request latency in the
tail. This problem has been studied extensively in prior work,
which suggests a more sophisticated approach would be to
dynamically adjust parallelism based on the number of instan-
taneous requests in the system and the execution time [27].
The patch reduces 99th percentile request processing time by
34% and 99th percentile end-to-end latency by 13%.

5.3 Debugging Throughput of Qperf
We use LDB to debug the average performance of Qperf,
demonstrating its value beyond tail-latency debugging. In par-
ticular, we profile the egress path on a Qperf server, focusing
on the average per-packet latency, allowing us to determine
an upper bound on achievable throughput. We find that each
batch of 32 1500-byte packets takes 38.11 µs on average,
putting a cap on throughput at around 9.8 Gbps. Note that
actual throughput has to be lower because not all batches
nor packets are maximum sized. Further, the server performs
other functions beyond continuously transmitting data packets
(e.g., process and transmit acknowledgments).

We use LDB to identify which functions take the most
time on average for transmission handling, revealing through-
put bottlenecks. Figure 11 shows the top three functions
with the highest average latency. The biggest bottleneck, re-
sponsible for 77.7% of the processing time of a batch, is
send_dgrams() which transmits packets through the ker-
nel’s sendmsg(), showing that the biggest performance bot-
tleneck lies in the kernel. Other bottlenecks include mem-
ory allocation in (do_allocate_frame()) and encryption
(encrypt_packet()). The remaining processing time for a
batch of packets can be attributed to a collection of lower-
latency functions. Thus, to improve the throughput, one
should optimize the network stack (e.g., by using kernel-
bypass), memory operations, and cryptographic operations.

To highlight the value of the profile produced by LDB,



Figure 13: Average latency measurement granularity and the
breakdown of stack scanning iterations with different call stack
refresh periods in the synthetic application.

we compare its output to the profile produced by Linux’s
perf. Figure 12 reports the list of function names ranked by
highest CPU time by perf. It shows that perf cannot pin-
point any of send_dgrams(), ptls_adad__do_encrypt(),
or do_allocate functions that are responsible for 91% of the
packet processing time, reporting that they consume 0.04%,
0.28%, and 0.2% of the CPU time, respectively. In particular,
perf’s focus on average CPU time provides very coarse grain
results, focusing on top-level functions like quicly_send
which encapsulate all egress path functionality. Furthermore,
it doesn’t differentiate between functions on the critical path
of egress traffic, and those happening periodically off the crit-
ical path, and it can’t tie kernel delays to functions. Thus, we
conclude that LDB can provide superior insights even when
average performance is the focus of the debugging process.

6 Performance Evaluation
Our evaluations answer the following key questions:
1. What is LDB’s latency measurement granularity?
2. Is LDB more portable than hardware-assisted latency de-

bugging systems?
3. Can LDB limit the overhead it places on applications?
4. Can the trace data from LDB be decoded quickly?
5. How much does each component contribute to overhead?
Testbed. We use two machines with eighteen-core Intel Xeon
Gold 6534 3.0GHz CPU (Ice Lake), 64GB RAM, and Mel-
lanox ConnectX-6 200GbE NIC. For the portability experi-
ment(§ 6.2), we compare its performance with Intel Broadwell
machines (Intel Xeon E5 2640 v4 2.4GHz CPU, 64GB RAM,
and Mellanox ConnectX-4 25GbE NIC) and AMD Zen3 Mi-
lan machines (AMD 7543 2.8GHz CPU, 256GB RAM, and
Mellanox ConnectX-5 25GbE NIC). The median network
RTT between two machines measured with ICMP packets is
30 µs. We use one machine as a server and the other as a client.
Memcached and Lucene clients generate the requests follow-
ing an open-loop Poisson arrival process, and Qperf clients
generate a stream of requests for a data packet to measure the
network bandwidth with TCP Reno as transport.
Applications. We use a synthetic application described in §6.1
for microbenchmark. To evaluate the performance of LDB,
we reuse the workloads used in §5; Memcached SET/GET
and Lucene are latency-sensitive workloads, and Qperf is a
throughput-oriented workload.
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Figure 14: Average throughput of reference (without any pro-
filing), Intel PT, and LDB with Qperf workload with different
CPU architectures.

Baseline. We compare LDB to Intel Processor Trace (Intel
PT) which backs state-of-the-art latency profilers [2, 4, 26],
Coz that profiles the causal relationship between the func-
tion speedup and program speedup, and Xray that profiles
the application’s latency behavior with static timestamping.
For Intel PT, we use perf-intel-pt provided by Linux to
record and decode the Intel PT packets. For a fair comparison,
we use a coarse-grained timing packet with tsc and decode
only function call and return events with command line ar-
gument --call-ret-trace. We disable return compression
(noretcomp) for more reliable decoding.
Evaluation Metrics. We report end-to-end latency (for
latency-sensitive applications), average throughput (for best-
effort application), raw trace size, and decoding time. End-
to-end latencies and the average throughput are measured at
the clients, and raw trace size and decoding time are mea-
sured at the server after the experiment finishes. Raw trace
size measures the output size of each system, and decoding
time measures the time required to parse the raw output to
function-level latencies and to calculate the statistics of the
function latencies. Because Intel PT takes too much time to
decode, we measure the latency for decoding 1 ms long Intel
PT trace. For LDB, we run the experiments for 4 seconds for
Memcached and Qperf, and 1 minute for Lucene.

6.1 Microbenchmark
We delve into a detailed analysis of LDB’s latency measure-
ment granularity using a synthetic application which repeat-
edly destroys and reconstructs 20 stack frames through recur-
sion, with a predefined refresh period. We experiment with
varying the call stack refresh period from 100 µs to 1 µs and
measure the average latency measurement granularity, de-
fined as the average time elapsed between two successive
valid stack scans. We further categorize the stack scanning
iterations into three groups: invalid scans resulting from se-
quential lock fails with data races, stack traversals, and fast
path iterations where no modification is detected in either the
most recent RBP or the generation number in the TLS region.

Figure 13 presents the results. As the call stack refresh pe-
riod decreases, the application thread interacts with the stack
frames more frequently to destroy existing stack frames with
function returns and to build new ones with new function
calls. This increased frequency leads to cache thrashing and
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Figure 15: End-to-end latency distribution of reference (without any profiling), Intel PT, and LDB with Memcached SET, GET, and
Lucene workload at 20% load.

Workload Trace Size / s
(trace errors / s)

Decoding
Time / s

Memcached
SET

Intel PT
696.84 MB
(2k trace errors) 48.4 min

LDB 149.38 MB (-79%) 1.7 s

Memcached
GET

Intel PT
796.72 MB
(5k trace errors) 1.8 hr

LDB 237.46 MB (-70%) 2.7 s

Lucene Intel PT
1,066.29 MB
(6k trace errors) 3.1 min

LDB 2.12 MB (-99%) 0.7 s

Qperf Intel PT
944.03 MB
(559k trace errors) 3.7 hr

LDB 25.4 MB (-97%) 0.8 s

Figure 16: Trace size and decoding time of Intel PT and LDB
for four workloads. Trace size and decoding time are normalized
by execution time.

data races between the application thread and the stack scan-
ning thread more often, increasing the average granularity in
latency measurement with more invalid stack scans. In addi-
tion, with more frequent modifications in the stack frames,
the stack scanner requires more iterations of full stack frame
traversals, which further increases the average latency mea-
surement granularity. In an experiment with a function depth
of 20 and 1 µs call stack refresh period, the latency can be
measured with the granularity of 119 ns with 6% invalid stack
scans, 21% of full scans, and 73% of fast path scans.

When dealing with multiple application threads, the av-
erage granularity increases in proportion to the number of
application threads being profiled. For finer granularity in
latency measurement, multiple stack scanner threads can be
used, each profiling a subset of the application threads.

6.2 Portability of LDB
LDB is not designed for a specific platform. In principle, its
design can be used on most architectures such as x86, ARM,
and RISC-V. However, Intel-PT-based tools are tied to Intel’s
specific architectures and cannot be ported to other platforms.
Our LDB prototype is implemented for x86 architectures and
works well on any x86 architectures while Intel PT only works
with some Intel processors (later than Broadwell).

To illustrate the portability of LDB, we run the Qperf work-
load with different x86 CPU models and compare it against
the reference (i.e., no latency profiling) and Intel PT. Figure 14
shows the average throughput measured by Qperf on three
different CPU architectures. It shows that Intel PT’s perfor-
mance highly depends on the CPU architectures. Even though

Intel PT has only a 4% of throughput drop on the recent Ice
Lake Intel CPU, it experiences 59% of the throughput drop
on an Intel Broadwell CPU, and it cannot be used for AMD
processors. On the other hand, LDB has a more consistent
overhead of up to 7% thanks to its software-based approach.

6.3 Overheads of LDB

Application performance degradation. To get more confi-
dence in LDB’s low overhead, we measure the application per-
formance impact on three latency-sensitive workloads (Mem-
cached SET/GET and Lucene) and compare it to other profil-
ing mechanisms. For the benefit of Intel PT, benchmarks ran
on our testbed with Intel Xeon Gold 6534.

Figure 15 shows the end-to-end latency distribution mea-
sured at the client when the load is 20% of the system’s capac-
ity for Memcached and Lucene. We compare the performance
of the applications when no profiling is done (i.e., Ref.) to
when LDB, Intel PT, Coz, or XRay is used. For all workloads,
Coz has the largest overhead at tail because it intentionally de-
lays all the other threads than the thread being sampled, which
makes it impractical to use over live traffic. The overhead of
XRay is proportional to the number of function invocations as
it statically instruments every function entry / exit to measure
the latency. Due to its high overhead, the load exceeds the ca-
pacity, leading to extremely high latency with high queueing
delay. Intel PT and LDB have comparable overhead across the
workloads. LDB increases median(99th percentile) latency by
16%(1%), 22%(10%), and 18%(43%) for Memcached SET,
GET, and Lucene workloads while Intel PT increases 9%(2%),
45%(23%), and 27%(64%) in the same setting.
Trace size and decoding time. Figure 16 reports the trace
size and decoding time of Intel PT and LDB for the three
applications. Intel PT requires high memory / PCIe bandwidth
and disk space, especially for applications with more branches
and jump instructions. For example, in Qperf, Intel PT outputs
944 MB/s of trace data. In addition, because of the limited
memory bandwidth, it drops the event records and results in
up to 559 thousand trace errors per second, which makes its
visibility limited. To make matters worse, Intel PT takes up
to 3.7 hours to decode 1 second of trace data, converting raw
branch and jump information into function-level latencies. In
contrast, the size of LDB trace is up to 99% smaller than Intel
PT, typically requiring less than 250 MB/s, and it only takes
a few seconds to decode 1 second of trace data.
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Figure 17: Performance Breakdown of LDB with Lucene work-
load at 20% load.

6.4 Breakdown of LDB’s overhead
We analyzed how much each component contributes to the
overhead for Lucene workload with the highest latency dis-
tortion under LDB whose median(99th percentile) latency is
increased by 35%(69%). We gradually activated four compo-
nents of LDB: application instrumentation (inst), the stack
scanning/logging thread (scan), the shim layer (shim), and
Linux scheduling event recording.

Figure 17 shows that instrumentation, the stack scanning,
the shim layer, and Linux scheduling event recording are re-
sponsible for 11% (23%), 7% (17%), 3% (14%), and 1% (0%)
of the median (99th percentile) latency increase, respectively.

7 Related Work
Sampling-based tools. Existing statistical sampling-based
tools, such as perf [13] and Coz [21], are unable to analyze
tail latency because they sample too slowly. Coz is designed
to identify performance bottlenecks by estimating an applica-
tion’s virtual speedups through dynamic experiments that mea-
sure thread interactions. By artificially delaying all but one
thread, Coz simulates the hypothetical performance improve-
ment of specific functions. Although Coz addresses some of
the limitations of perf, it is unsuitable for tail latency debug-
ging because its reliance on statistical sampling causes it to
miss tail behaviors. Moreover, when it identifies problematic
code lines, it doesn’t reveal the underlying reasons for the
bottleneck, like LDB can through its request timelines.
Trace-based latency profiling tools. Trace-based tools, like
XRay [18] and Intel PT, can capture the precise execution
times of every function call but come with their own chal-
lenges. XRay, through compile-time instrumentation, records
the execution times of individual functions. However, this
results in high instrumentation overhead, which limits its use
in microsecond-scale RPC applications. Intel PT, a hardware-
assisted approach, captures control flow information at every
branch. While systems like NSight [26] and MagicTrace [4]
leverage Intel PT to debug latency problems, Intel PT’s mas-
sive data rates, up to 1GB/s, necessitate substantial storage
and lengthy decoding times to convert control flow informa-
tion into latency information, which makes it impractical for
real-time debugging. Additionally, Intel PT’s overhead varies
across generations of Intel CPUs, as shown in §6.2.
Continous profiling. SHIM rapidly collects hardware perfor-
mance counters and software tags through busy polling [36]. It

shares LDB’s basic strategy of sampling with a busy-spinning
core, but it lacks the ability to measure invocation latency
without additional mechanisms, such as our proposed stack
sampling techniques. Moreover, one busy-spinning SHIM
profiler thread is needed for each hyperthread pair, resulting
in high overheads due to competition over shared functional
units. LDB, by contrast, can avoid this overhead through a
different design that enables one monitoring thread to profile
multiple threads running across multiple cores.
Limiting tracing to specific functions. As seen with the case
of Xray, timestamp instrumentation at each function’s en-
try and exit entails significant overhead. Thus, some tools
limit tracing to a few specific functions at a time. There
are various techniques and tools to enable dynamically en-
abling/disabling timestamp instrumentation: notably, dynamic
instruction patching [18, 20, 25], dynamic instrumentation via
eBPF [1, 10, 24], and instrumentation via JIT compiler [33].
However, because the scope of functions being profiled is lim-
ited, they require multiple iterations with the developer’s in-
tervention for latency debugging, and they sacrifice the ability
to capture complete timelines. There are efforts to streamline
these iterations [7, 29, 30]. AMD offers a suite of profiling
tools (e.g., Omnitrace [16] and uProf [15]). Both solutions
rely on sampling. Further, Omnitrace offers Coz-like function-
ality as well as specific function instrumentation. Omnitrace’s
instrumentation adds 1024 instructions per function compared
to LDB’s 9 instructions per function.
Distributed latency tracing. Envoy [11], Zipkin [14],
Jaeger [12], AWS X-Ray [9], and Apache SkyWalking [8]
provide tools to trace a request in a distributed computing en-
vironment at an RPC or microservice granularity. These tools
may find a service causing high end-to-end latency, but they
don’t have visibility inside the service. Distributed tracing sys-
tems and LDB are complimentary. Problematic services can
be found with distributed tracing, while problematic functions
in a specific service can be found with LDB.
Mutex bindings. Dynamic data race detectors, like
Eraser [34], often use similar mechanisms to interpose on
locking functions, but their goal is to instead verify if the
application follows a consistent locking protocol.

8 Conclusion
In this paper, we presented LDB, an efficient latency pro-
filing tool with low overhead, high visibility, fast decoding,
and portability. It utilizes a key technique, stack sampling,
where each function’s invocation latency is measured by sam-
pling a unique generation number assigned in the stack frame.
With optional request tagging by the developer, LDB can con-
struct the detailed timeline of a request, including cross-thread
interactions caused by synchronization, the time spent in func-
tions, and the contribution of the OS scheduler. Our evaluation
showed that LDB could profile the latency behavior of three
applications and reveal their main performance bottlenecks
effectively on multiple platforms with low overhead.



Acknowledgments
We thank our shepherd Yongle Zhang, as well as to the anony-
mous reviewers for their invaluable feedback. We also thank
Kostis Kaffes, John Ousterhout, and David Culler for their
constructive feedback; and Cloudlab [23] for providing us
with machines of different architectures for portability ex-
periments. This work was funded in part by NSF grants
CNS-2104398, CNS-2212098, and CNS-2212099; DARPA
FastNICs (HR0011-20-C-0089); VMware; and a Google Re-
search Award.

References
[1] eBPF. https://ebpf.io/.

[2] Fix performance bottlenecks with intel vtune profiler.
https://www.intel.com/content/www/us/en/
developer/tools/oneapi/vtune-profiler.html.

[3] Lucene++: c++ port of lucene library. https://
github.com/luceneplusplus/LucenePlusPlus.

[4] magic-trace: Diagnosing tricky performance issues
easily with intel processor trace. https://blog.
janestreet.com/magic-trace/.

[5] qperf: performance measurement tool for QUIC. https:
//github.com/rbruenig/qperf/.

[6] Sequence counters and sequential locks. https://
docs.kernel.org/locking/seqlock.html.

[7] wachy: A new approach to performance debugging.
https://rubrikinc.github.io/wachy/.

[8] Apache SkyWalking, 2022. https://skywalking.
apache.org/.

[9] AWS X-Ray, 2022. https://aws.amazon.com/
xray/.

[10] bpftrace: High-level tracing language for Linux systems,
2022. https://bpftrace.org/.

[11] Envoy Proxy, 2022. https://www.envoyproxy.io/.

[12] Jaeger: open source, end-to-end distributed tracing,
2022. https://www.jaegertracing.io/.

[13] perf: Linux profiling with performance counters,
2022. https://perf.wiki.kernel.org/index.
php/Main_Page.

[14] Zipkin, 2022. https://zipkin.io/.

[15] AMD uProf, 2023. https://www.amd.com/en/
developer/uprof.html.

[16] Omnitrace: Application profiling, tracing, and anal-
ysis, 2023. https://github.com/AMDResearch/
omnitrace/.

[17] L. A. Barroso, J. Dean, and U. Hölzle. Web search for
a planet: The google cluster architecture. IEEE Micro,
23(2):22–28, 2003.

[18] D. M. Berris, A. Veitch, N. Heintze, E. Anderson, and
N. Wang. Xray: A function call tracing system. Techni-
cal report, 2016.

[19] J. Bonwick and J. Adams. Magazines and vmem:
Extending the slab allocator to many cpus and arbi-
trary resources. In Proceedings of the General Track:
2001 USENIX Annual Technical Conference, June 25-
30, 2001, Boston, Massachusetts, USA, pages 15–33.
USENIX, 2001.

[20] B. Cantrill, M. W. Shapiro, and A. H. Leventhal. Dy-
namic instrumentation of production systems. In ATC,
2004.

[21] C. Curtsinger and E. D. Berger. Coz: Finding code that
counts with causal profiling. In SOSP, 2015.

[22] J. Dean and L. A. Barroso. The tail at scale. Communi-
cations of the ACM, 2013.

[23] D. Duplyakin, R. Ricci, A. Maricq, G. Wong, J. Duerig,
E. Eide, L. Stoller, M. Hibler, D. Johnson, K. Webb, et al.
The design and operation of cloudlab. In ATC, 2019.

[24] B. Gregg. Linux bpf superpowers. http:
//www.brendangregg.com/blog/2016-03-05/
linux-bpf-superpowers.html, 2016.

[25] B. Gregg and J. Mauro. DTrace: Dynamic Tracing in
Oracle Solaris, Mac OS X and FreeBSD. Prentice Hall
Professional, 2011.

[26] R. Haecki, R. N. Mysore, L. Suresh, G. Zellweger,
B. Gan, T. Merrifield, S. Banerjee, and T. Roscoe. How
to diagnose nanosecond network latencies in rich end-
host stacks. In NSDI, 2022.

[27] M. E. Haque, Y. H. Eom, Y. He, S. Elnikety, R. Bian-
chini, and K. S. McKinley. Few-to-many: Incremental
parallelism for reducing tail latency in interactive ser-
vices. In ASPLOS, 2015.

[28] K. M. Hazelwood, S. Bird, D. M. Brooks, S. Chin-
tala, U. Diril, D. Dzhulgakov, M. Fawzy, B. Jia,
Y. Jia, A. Kalro, J. Law, K. Lee, J. Lu, P. Noordhuis,
M. Smelyanskiy, L. Xiong, and X. Wang. Applied ma-
chine learning at facebook: A datacenter infrastructure
perspective. In IEEE International Symposium on High
Performance Computer Architecture, HPCA 2018, Vi-
enna, Austria, February 24-28, 2018, pages 620–629.
IEEE Computer Society, 2018.

https://ebpf.io/
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://www.intel.com/content/www/us/en/developer/tools/oneapi/vtune-profiler.html
https://github.com/luceneplusplus/LucenePlusPlus
https://github.com/luceneplusplus/LucenePlusPlus
https://blog.janestreet.com/magic-trace/
https://blog.janestreet.com/magic-trace/
https://github.com/rbruenig/qperf/
https://github.com/rbruenig/qperf/
https://docs.kernel.org/locking/seqlock.html
https://docs.kernel.org/locking/seqlock.html
https://rubrikinc.github.io/wachy/
https://skywalking.apache.org/
https://skywalking.apache.org/
https://aws.amazon.com/xray/
https://aws.amazon.com/xray/
https://bpftrace.org/
https://www.envoyproxy.io/
https://www.jaegertracing.io/
https://perf.wiki.kernel.org/index.php/Main_Page
https://perf.wiki.kernel.org/index.php/Main_Page
https://zipkin.io/
https://www.amd.com/en/developer/uprof.html
https://www.amd.com/en/developer/uprof.html
https://github.com/AMDResearch/omnitrace/
https://github.com/AMDResearch/omnitrace/
http://www.brendangregg.com/blog/2016-03-05/linux-bpf-superpowers.html
http://www.brendangregg.com/blog/2016-03-05/linux-bpf-superpowers.html
http://www.brendangregg.com/blog/2016-03-05/linux-bpf-superpowers.html


[29] J. Huang, B. Mozafari, and T. F. Wenisch. Statistical
analysis of latency through semantic profiling. In Eu-
roSys, 2017.

[30] M. Jovic, A. Adamoli, and M. Hauswirth. Catch me if
you can: performance bug detection in the wild. In Pro-
ceedings of the 26th Annual ACM SIGPLAN Conference
on Object-Oriented Programming, Systems, Languages,
and Applications, OOPSLA 2011, part of SPLASH 2011,
Portland, OR, USA, October 22 - 27, 2011, pages 155–
170. ACM, 2011.

[31] A. Langley, A. Riddoch, A. Wilk, A. Vicente, C. Krasic,
D. Zhang, F. Yang, F. Kouranov, I. Swett, J. Iyengar, et al.
The quic transport protocol: Design and internet-scale
deployment. In SIGCOMM, 2017.

[32] C. Lattner and V. Adve. Llvm: A compilation framework
for lifelong program analysis & transformation. In CGO,
2004.

[33] Y. Luo, K. Rodrigues, C. Li, F. Zhang, L. Jiang, B. Xia,
D. Lion, and D. Yuan. Hubble: Performance debug-
ging with in-production, just-in-time method tracing on
android. In OSDI, 2022.

[34] S. Savage, M. Burrows, G. Nelson, P. Sobalvarro, and
T. Anderson. Eraser: A dynamic data race detector for
multithreaded programs. TOCS, 1997.

[35] S. Yang, S. J. Park, and J. Ousterhout. NanoLog: A
nanosecond scale logging system. In ATC, 2018.

[36] X. Yang, S. M. Blackburn, and K. S. McKinley. Com-
puter performance microscopy with shim. ISCA, 2015.


	Introduction
	Background and Motivation
	Debugging a Tail Latency Problem
	Intuition and Challenges

	System Design
	Overview
	Stack Sampling
	Tracing Cross-thread Request Handling
	Analysis Script

	Implementation
	LLVM-LDB
	The LDB API and Parameters

	LDB Use Cases
	Reconstructing the Timeline of the Request
	Tail Latency Debugging
	Debugging Throughput of Qperf

	Performance Evaluation
	Microbenchmark
	Portability of LDB
	Overheads of LDB
	Breakdown of LDB's overhead

	Related Work
	Conclusion

