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Abstract
Energy proportionality and workload consolidation are im-
portant objectives towards increasing efficiency in large-
scale datacenters. Our work focuses on achieving these goals
in the presence of applications with µs-scale tail latency re-
quirements. Such applications represent a growing subset of
datacenter workloads and are typically deployed on dedi-
cated servers, which is the simplest way to ensure low tail
latency across all loads. Unfortunately, it also leads to low
energy efficiency and low resource utilization during the fre-
quent periods of medium or low load.

We present the OS mechanisms and dynamic control
needed to adjust core allocation and voltage/frequency set-
tings based on the measured delays for latency-critical work-
loads. This allows for energy proportionality and frees the
maximum amount of resources per server for other back-
ground applications, while respecting service-level objec-
tives. Monitoring hardware queue depths allows us to detect
increases in queuing latencies. Carefully coordinated adjust-
ments to the NIC’s packet redirection table enable us to re-
assign flow groups between the threads of a latency-critical
application in milliseconds without dropping or reordering
packets. We compare the efficiency of our solution to the
Pareto-optimal frontier of 224 distinct static configurations.
Dynamic resource control saves 44%–54% of processor en-
ergy, which corresponds to 85%–93% of the Pareto-optimal
upper bound. Dynamic resource control also allows back-
ground jobs to run at 32%–46% of their standalone through-
put, which corresponds to 82%–92% of the Pareto bound.
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1. Introduction
With the waste in the power delivery and cooling systems
largely eliminated [4], researchers are now focusing on the
efficient use of the tens of thousands of servers in large-scale
datacenters. The first goal is energy proportionality, which
minimizes the energy consumed to deliver a particular work-
load [3, 29]. Hardware enhancements, primarily in dynamic
voltage/frequency scaling (DVFS) and idle modes in modern
processors [22, 45] provide a foundation for energy propor-
tionality. The second goal is workload consolidation, which
raises server utilization and minimizes the number of servers
needed for a particular set of workloads [14, 46, 50]. Ad-
vances in cluster management [11, 32] and server consoli-
dation using virtual machines or container systems have also
played an important role in datacenter efficiency by enabling
multiple workloads to be consolidated on each machine.

The two goals map to distinct economic objectives: en-
ergy proportionality reduces operational expenses (opex),
whereas workload consolidation reduces capital expenses
(capex). Since capital costs often dominate the datacenter’s
total cost of ownership (TCO), consolidation is highly desir-
able. Nevertheless it is not always possible, e.g., when one
application consumes the entirety of a given resource, e.g.,
memory. In such cases, energy proportionality is a necessity.

Datacenter applications have evolved with the advent of
web-scale applications. User-facing, large-scale applications
now rely extensively on high fan-out patterns between low-
latency services [9]. Such services exhibit low per-request
latencies (a handful of µs for a key-value store), have strict
service-level objectives (SLO, e.g. < 500µs at the 99th per-
centile), and must sustain massive request rates and high
client fan-in connections. Although functionally simple,
these services are deployed on thousands of servers of large-
scale datacenters. Because of their importance, there are
several proposals to improve their throughput or latency us-
ing user-level networking stacks [20, 31], networking toolk-
its [16, 18, 44], or dataplane operating systems [6, 43].



Such latency-critical services are challenging to run in a
shared infrastructure environment. They are particularly sen-
sitive to resource allocation and frequency settings, and they
suffer frequent tail latency violations when common power
management or consolidation approaches are used [26, 27].
As a result, operators typically deploy them on dedicated
servers running in polling mode, forgoing opportunities for
workload consolidation and for energy-proportional com-
puting at below-peak utilization levels.

To gain a principled understanding of the challenges for
resource management in the presence of latency-critical ser-
vices, we performed an exhaustive analysis of static con-
figurations for a latency-critical service (memcached [35])
running on a modern server. We explored up to 224 possi-
ble settings for core allocation, use of hyperthreads, DVFS
frequencies, and Turbo Boost. While our experiments use
a single application, the implications have broad applica-
bility because memcached has aggressive latency require-
ments, short service times, and a large number of indepen-
dent clients that are common among many latency-critical
applications. Our experiments reveal that there is an inher-
ent tradeoff for any given static configuration between the
maximum throughput and the overall efficiency when oper-
ating below peak load. Furthermore, the experiments reveal
a Pareto-optimal frontier [41] in the efficiency of static con-
figurations at any given load level, which allows for close to
linear improvements in energy-proportionality and workload
consolidation factors.

Based on these insights, we introduce a set of novel dy-
namic resource management mechanisms and policies that
improve energy proportionality and workload consolidation
in the presence of latency-sensitive applications. We inte-
grate these techniques in IX, a state-of-the-art dataplane op-
erating system that optimizes both throughput and latency
for latency-critical workloads [6].

Fig. 1 illustrates our approach: the dynamic controller
(ixcp) adjusts the number of cores allocated to a latency-
sensitive application running on top of IX and the DVFS set-
tings for these cores. The remaining cores can be placed in
idle modes to reduce power consumption or can be safely
used to run background tasks. The controller builds upon
two key mechanisms. The first mechanism detects back-
log and increases in queuing delays that exceed the allow-
able upper bound for the specific latency-critical applica-
tion. It monitors CPU utilization and signals required adjust-
ments in resource allocation. The second mechanism quickly
migrates both network and application processing between
cores transparently and without dropping or reordering pack-
ets.

We evaluated our system with two control policies that
optimize for energy proportionality and workload consolida-
tion, respectively. A policy determines how resources (cores,
hyperthreads, and DVFS settings) are adjusted to reduce un-
derutilization or to restore violated SLO. The two policies
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Figure 1: Dynamic resource controls with IX for a workload
consolidation scenario with a latency-sensitive application
(e.g., memcached) and a background batch task (e.g., an-
alytics). The controller, ixcp, partitions cores among the
applications and adjusts the processor’s DVFS settings.

are derived from the exhaustive analysis of the 224 static
configurations. For the platform studied (a Xeon E5-2665),
we conclude that: for best energy proportionality, (i) we start
with the lowest clock rate and allocate additional cores to the
latency-critical task as its load grows, using at first only one
hyperthread per core; (ii) we enable the second hyperthread
only when all cores are in use; and finally (iii) we increase
the clock rate for the cores running the latency-critical task.
For best consolidation, (i) we start at the nominal clock rate
and add cores with both hyperthreads enabled as load in-
creases; and (ii) finally enable Turbo Boost as a last resort.

This paper makes the following contributions:
. We develop techniques for fine-grain resource manage-
ment for latency-critical workloads. This includes mecha-
nisms for detection of load changes in sub-second timescales
and for rebalancing flow-groups between cores without
causing packet drops or reordered deliveries. In our experi-
ments, this mechanism completes in less than 2 ms 95% of
the time, and in at most 3.5 ms.
. We provide a methodology that uses the Pareto frontier of a
set of static configurations to derive resource allocation poli-
cies. We derive two policies for memcached that respect
the SLO constraints of a latency-critical in-memory key-
value store. These policies lead to 44%–54% energy sav-
ings for a variety of load patterns, and enable workload con-
solidation with background jobs executing at 32%–46% of
their peak throughput on a standalone machine. These gains
are close to the Pareto-optimal bounds for the server used,
within 88% and 82%–92% respectively.
. We demonstrate that precise and fine-grain control of
cores, hyperthreads, and DVFS has a huge impact on both
energy proportionality and workload consolidation, espe-



cially when load is highly variable. DVFS is a necessary but
insufficient mechanism to control latency-critical applica-
tions that rely on polling.

The rest of this paper is organized as follows. §2 describes
the experimental setup. §3 characterizes resource usage us-
ing static configurations and derives insights for dynamic al-
location policies. §4 describes the design and implementa-
tion of the mechanisms and policies for dynamic resource
management in IX. §5 evaluates the impact of the dynamic
controller for energy proportionality and workload consol-
idation. We discuss insights and open issues in §6, related
work in §7, and conclude in §8.

2. Workloads and Experimental Setup
Our experimental setup consists of a cluster of 11 clients
and one server connected by a low-latency 10 GbE switch.
10 clients generate load, and the 11th measures latency of
requests to the latency-sensitive application. The client ma-
chines are a mix of Xeon E5-2637 @ 3.5 Ghz and Xeon
E5-2650 @ 2.6 Ghz. The server is a Xeon E5-2665 @
2.4 Ghz with 256 GB of DRAM, typical in datacenters. Each
client and server socket has 8 cores and 16 hyperthreads. All
machines are configured with one Intel x520 10 GbE NIC
(82599EB chipset). Our baseline configuration in each ma-
chine is an Ubuntu LTS 14.0.4 distribution, updated to the
3.16.1 Linux kernel. Although the server has two sockets,
the foreground and background applications run on a single
processor to avoid any NUMA effects. We run the control
plane on the otherwise empty second socket, but do not ac-
count for its energy draw.

Our primary foreground workload is memcached, a
widely deployed, in-memory, key-value store built on top
of the libevent framework [35]. It is frequently used
as a high-throughput, low-latency caching tier in front of
persistent database servers. memcached is a network-
bound application, with threads spending over 75% of ex-
ecution time in kernel mode for network processing when
using Linux [26]. It is a difficult application to scale be-
cause the common deployments involve high connection
counts for memcached servers and small-sized requests
and replies [2, 39]. Combined with latency SLOs in the few
hundreds of microseconds, these characteristics make mem-
cached a challenging workload for our study. Any short-
comings in the mechanisms and policies for energy propor-
tionality and workload consolidation will quickly translate
to throughput and latency problems. In contrast, workloads
with SLOs in the millisecond range are more forgiving.
Furthermore, memcached has well-known scalability lim-
itations [28]. To improve its scalability, we configure mem-
cached with a larger hash table size (-o hashpower=20)
and use a random replacement policy instead of the built-in
LRU, which requires a global lock. This last change pro-
vides memcached with similar multicore scalability as state-

of-the-art key-value stores such as MICA [28]. We configure
memcached similarly for Linux and IX.

Our primary background application is a simple synthetic
proxy for computationally intense batch processing applica-
tions: it encrypts a memory stream using SHA-1 in parallel
threads that each run in an infinite loop and report the aggre-
gate throughput. The workload streams through a 40 MB ar-
ray which exceeds the capacity of the processor’s L3-cache,
and therefore interferes (by design) with the memory sub-
system performance of the latency-sensitive application.

We use the mutilate load-generator to place a se-
lected load on the foreground application in terms of re-
quests per second (RPS) and measure response latency [25].
Mutilate coordinates a large number of client threads
across 10 machines to generate the desired RPS load, and
one additional, unloaded client to measure latency, for a
total of 2,752 connections to the memcached server. We
configure mutilate to generate load representative of the
Facebook USR workload [2]: this is a large-scale deploy-
ment dominated by GET requests (99%), with short keys
(<20B) and 2B values. Each request is issued separately (no
multiget operations). However, clients are permitted to
pipeline up to four requests per connection if needed to keep
up with their target request rate. We enhance mutilate
to support dynamically changing load levels used in these
experiments. As the memcached server is multi-threaded,
we also enhance the latency-measuring client to randomly
choose among 32 open connections for each request, as to
ensure statistically significant measurements.

We compute metrics as follows: the unloaded client mea-
sures latency by issuing one request at the time, chosen ran-
domly among its 32 open connections. The SLO is spec-
ified so that the 99th percentile of requests issued by that
unloaded client return in ≤ 500µs. Latency distribution,
achieved requests, and power metrics for all graphs are re-
ported at one-second intervals. Energy consumption is mea-
sured using the Intel RAPL counters [8] for the processor in
question; these provide an accurate model of the power draw
of the CPU, but ignore platforms effects.
A note on Turbo Boost: For any given throughput level,
we observe that the reported power utilization is stable for
all CPU frequencies except for Turbo Boost. When running
in Turbo Boost, the temperature of the CPU gradually rises
over a few minutes from 58◦C to 78◦C, and with it the dissi-
pated energy rises by 4 W for the same level of performance.
The experiments in §3.1 run for a long time in Turbo Boost
mode with a hot processor; we therefore report those results
as an energy band of 4 W.

3. Understanding Dynamic Resource Usage
The purpose of dynamic resource allocation is to adapt to
changes of load of a latency-critical workload by adding or
removing resources as needed. The remaining resources can
be placed in idle modes to save energy or used by other con-
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Figure 2: Pareto efficiency for energy proportionality and workload consolidation, for Linux 3.16.1 and IX. The Pareto
efficiency is in red while the various static configurations are color-coded according to their distinctive characteristics.

solidated applications. In general, dynamic control can be
applied to any resource, including processor cores, mem-
ory, and I/O. We focus on managing CPU cores because
they are the largest contributor to power consumption and
draw significant amounts of energy even when lightly uti-
lized [4, 29]. Moreover, the ability to dynamically reassign
cores between latency-critical and background applications
is key to meet latency SLOs for the former and to make rea-
sonable progress using underutilized resources for the latter.

Dynamic resource control is a multi-dimensional prob-
lem on current CPUs: multi-core, hyperthreading and fre-
quency each separately impact the workload’s performance,
energy consumption and consolidation opportunities. §3.1
uses a Pareto methodology to evaluate this three-dimensional
space, and §3.2 discusses the derived allocation policies.

3.1 Pareto-Optimal Static Configurations
Static resource configurations allow for controlled experi-
ments to quantify the tradeoff between an application’s per-
formance and the resources consumed. Our approach limits
bias by considering many possible static configurations in
the three-dimensional space of core, hyperthread, and fre-
quency. For each static configuration, we characterize the
maximum load that meets the SLO (≤ 500µs@99th per-

centile); we then measure the energy draw and throughput
of the background job for all load levels up to the maximum
load supported. From this large data set, we derive the set
of meaningful static configurations and build the Pareto effi-
ciency frontier [41]. The frontier specifies, for any possible
load level, the optimal static configuration and the resulting
minimal energy draw or maximum background throughput,
depending on the scenario.

Fig. 2 presents the frontier for four experiments: the
energy proportionality and workload consolidation scenar-
ios, for both Linux and IX. The four graphs each plot the
objective—which is either to minimize energy or maximize
background throughput—as a function of the foreground
throughput, provided that the SLO is met. Except for the red
lines, each line corresponds to a distinct static configuration
of the system: the green curves correspond to configuration
at the minimal clock rate of 1.2 Ghz; the blue curves use all
available cores and hyperthreads; other configurations are in
black. In Turbo Boost mode, the energy drawn is reported as
a band since it depends on operating temperature (see §2).

Finally, the red line is the Pareto frontier, which corre-
sponds, for any load level, to the optimal result using any
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Figure 3: Energy-proportionality comparison between the
Pareto-optimal frontier considering only DVFS adjustments,
and the full Pareto frontier considering core allocation, hy-
perthread allocations, and frequency.

of the static configurations available. Each graph only shows
the static configurations that participate in the frontier.
Energy proportionality: We evaluate 224 distinct combi-
nations: from one to eight cores, using consistently either
one or two threads per core, for 14 different DVFS levels
from 1.2 Ghz to 2.4 Ghz as well as Turbo Boost. Fig. 2a and
Fig. 2b show the 43 and 32 static configurations (out of 224)
that build the Pareto frontier for energy proportionality. The
figures confirm the intuition that: (i) various static configura-
tions have very different dynamic ranges, beyond which they
are no longer able to meet the SLO; (ii) each static config-
uration draws substantially different levels of energy for the
same amount of work; (iii) at the low-end of the curve, many
distinct configurations operate at the minimal frequency of
1.2 Ghz, obviously with a different number of cores and
threads, and contribute to the frontier; these are shown in
green in the Figure; (iv) at the high-end of the range, many
configurations operate with the maximum of 8 cores, with
different frequencies including Turbo Boost.
Consolidation: The methodology here is a little different.
We first characterize the background job, and observe that it
delivers energy-proportional throughput up to 2.4 Ghz, but
that Turbo Boost came at an energy/throughput premium.
Consequently, we restrict the Pareto configuration space at
2.4 Ghz; the objective function is the throughput of the back-
ground job, expressed as a fraction of the throughput of that
same job without any foreground application. Background
jobs run on all cores that are not used by the foreground ap-
plication. Fig. 2c and Fig. 2d show the background through-
put, expressed as a fraction of the standalone throughput, as
a function of the foreground throughput, provided that the
foreground application meets the SLO: as the foreground
application requires additional cores to meet the SLO, the
background throughput decreases proportionally.

Linux vs. IX: Fig. 2a and Fig. 2b show that Linux and IX
behave differently: (i) IX improves the throughput of Linux
by 4.8×; (ii) IX can clearly take advantage of hyperthread-
ing and has its best performance with configurations with
16 threads on 8 cores. In contrast, Linux cannot take ad-
vantage of hyperthreading and has its best performance with
8 threads of control running on 8 cores; (iii) the efficiency
of individual static configurations of Linux, which relies
on interrupts, is much more subject to load than individ-
ual static configurations of IX, which relies on a polling
model. As a consequence, an improperly configured, over-
sized IX dataplane will be extremely energy-inefficient at
low-to-moderate loads; (iv) the comparison of the Pareto
frontiers shows that IX’s frontier always dominates the fron-
tier of Linux, i.e. provides better energy efficiency for the
same load level. This suggests that a properly configured
dataplane design is always more energy-efficient than any
Linux-based configuration. The difference is substantial, in-
cluding at low-to-moderate load levels: IX’s frontier is less
than half of Linux’s when the throughput load ≥ 780 KRPS
(∼54% of Linux’s capacity).
DVFS-only alternative: Fig. 3 further analyzes the data and
compares the Pareto frontiers with an alternate frontier that
only considers changes in DVFS frequency. The comparison
is limited to the energy proportionality scenario; for consoli-
dation, available cores are necessary for the background ap-
plication to run, and a DVFS-only solution would not suffice.

We observe that the impact of DVFS-only controls differs
noticeably between Linux and IX: with Linux, the DVFS-
only alternate frontier is very close to the Pareto frontier,
meaning that a DVFS-only approach such as Pegasus [29] or
Adrenaline [15] would be adequate. This is due to Linux’s
idling behavior, which saves resources. In the case of IX
however—and likely for any polling-based dataplane—a
DVFS-only scheduler would provide worse energy propor-
tionality at low-moderate loads than a corresponding Linux-
based solution. As many datacenter servers operate in the
10%-30% range [4], we conclude that a dynamic resource
allocation scheme involving both DVFS and core allocation
is necessary for dataplane architectures.

3.2 Derived Policy
We use the results from §3.1 to derive a resource config-
uration policy framework, whose purpose is to determine
the sequence of configurations to be applied, as a function
of the load on the foreground application, to both the fore-
ground (latency-sensitive) and background (batch) applica-
tions. Specifically, given an ever-increasing (or -decreasing)
load on the foreground applications, the goal is to determine
the sequence of resource configurations minimizing energy
consumption or maximizing background throughput, respec-
tively.

We observe that (i) the latency-sensitive application
(memcached) can scale nearly linearly, up to the 8 cores of



the processor; (ii) it benefits from running a second thread on
each core, with a consistent speedup of 1.3×; (iii) it is most
energy-efficient to first utilize the various cores, and only
then to enable the second hyperthread on each core, rather
than the other way around; and (iv) it is least energy-efficient
to increase the frequency.

We observe that the background application (i) also scales
linearly; but (ii) does not benefit from the 2nd hyperthread;
(iii) is nearly energy-proportional across the frequency spec-
trum, with the exception of Turbo Boost. From a total cost of
ownership perspective, the most efficient operating point for
the workload consolidation of the background task is there-
fore to run the system at the processor’s nominal 2.4 Ghz
frequency whenever possible. We combine these observa-
tions with the data from the Pareto analysis and derive the
following policies:
Energy Proportional Policy: As a base state, run with only
one core and hyperthread with the socket set at the mini-
mal clock rate (1.2Ghz). To add resources, first enable ad-
ditional cores, then enable hyperthreads on all cores (as a
single step), and only after that gradually increase the clock
rate until reaching the nominal rate (2.4Ghz); finally enable
Turbo Boost. To remove resources, do the opposite. This pol-
icy leads to a sequence of 22 different configurations.
Workload Consolidation Policy: As a base state, run the
background jobs on all available cores with the processor at
the nominal clock rate. To add resources to the foreground
application, first shift cores from the background thread to
the foreground application one at a time. This is done by first
suspending the background threads; use both hyperthreads
of the newly freed core for the foreground application. Next,
stop the background job entirely and allocate all cores to the
foreground applications. As a final step, enable Turbo Boost.
This policy leads to a sequence of 9 different configurations.

These policies closely track the corresponding Pareto
frontier. For energy proportionality, (i) the 32 different static
configurations of the frontier are a superset of the configura-
tions enabled by the policy, and (ii) the difference in overall
impact in terms of energy spent is marginal. For consolida-
tion, Pareto and policy nearly identically overlap.

Obviously, these conclusions may vary with platforms
and applications, but the use of underlying Pareto method-
ology remains valid. In fact, it should provide a robust guide
to determine allocation policies for more complex workloads
(e.g., with natural scalability limitations) and more flexible
platforms (e.g., the newer Haswell processors can set the
clock frequency separately for individual cores).

4. Dynamic Resource Controls of Dataplanes
We now present the design of the mechanisms and poli-
cies that are necessary to implement dynamic resource con-
trols in dataplane operating systems. Although the imple-
mentation is specific to the IX dataplane operating system,
the design principles generally apply to all high-throughput

dataplane operating systems such as Arrakis [43] and user-
level networking stacks running latency-sensitive applica-
tions [18, 20, 31]. Traditionally, such environments have not
focused on dynamic resource controls, instead they focused
solely on throughput with statically allocated resources,
without considerations for the energy consumed. Adding
resource controls in such environments poses the following
challenges:

1. How to rebalance flows across cores without impacting
normal performance. This is particularly challenging as
dataplane environments achieve high performance be-
cause of their coherence-free execution model. By that,
we mean a programming where all common case oper-
ations execute without requiring communication of syn-
chronization between threads.

2. How to rebalance flows across processing cores without
impacting network performance, given that dataplane op-
erating systems implement their own TCP/IP network-
ing stack and that TCP/IP performance is negatively im-
pacted whenever packets are either lost or processed out
of order [24]. This is particularly challenging whenever
the rebalancing operation also involves the reconfigura-
tion of the NIC, which generates inherent race conditions.

3. How to determine—both robustly and efficiently—whether
resources need to be added or can be removed from the
dataplane, given the complexity of modern applications,
and the difficulty to estimate the impact of resource con-
trols on application throughput.

Our design addresses these three challenges. We first
provide in §4.1 the necessary background on the IX data-
plane and in §4.2 the background on the few assumptions
made on the hardware. §4.3 describes the implementation
of the controller, which relies exclusively on application-
independent queuing delay metrics to adjust resources. §4.4
describes how a dataplane operating system can have both a
coherence-free execution model and at the same time allow
for rebalancing of flows. Finally, §4.5 describes the mecha-
nism that migrates flows without reordering packets.

4.1 Background on IX

The IX system architecture separates the control plane, re-
sponsible for the allocation of resources, from the dataplane,
which operates on them, using an approach similar to Ar-
rakis [43]. IX relies on hardware virtualization to protect the
kernel from applications: it uses Dune [5] to load and exe-
cute the IX dataplane instances, and uses the Linux host as
its control plane environment.

The IX dynamic controller is a Python daemon that con-
figures and launches the IX dataplane, then monitors its ex-
ecution, makes policy decisions, and communicates them to
the IX dataplane and the host operating system.

Unlike conventional operating systems, which decouple
network processing from application execution, the IX data-



app

libix

tcp/ip tcp/ip

timer

adaptive batch

1

2

4

5

Event

Conditions
Batched

Syscalls

3

6

k
e
r
n
e
l

u
s
e
r

Figure 4: Adaptive batching in the IX data plane.

plane relies on a run to completion with adaptive batching
scheme to deliver both low latency and high throughput to
applications.

Fig. 4 illustrates the key run-to-completion mechanism
built into the original IX dataplane [6]: each elastic thread
has exclusive access to NIC queues. In step (1), the data-
plane polls the receive descriptor ring and moves all received
packets into an in-memory queue and potentially posts fresh
buffer descriptors to the NIC for use with future incoming
packets. The thread then executes steps (2) – (6) for an adap-
tive batch of packets: the TCP/IP network stack processes
these packets (2) and the application then consumes the re-
sulting events (3). Upon return from user-space, the thread
processes batched systems calls and, in particular, the ones
that direct outgoing TCP/IP traffic (4), runs necessary timers
(5), and places outgoing Ethernet frames in the NIC’s trans-
mit descriptor ring for transmission (6).

Adaptive batching is specifically defined as follows: (i)
we never wait to batch requests and batching only occurs in
the presence of congestion; (ii) we set an upper bound on the
number of batched packets. Using batching only during con-
gestion allows us to minimize the impact on latency, while
bounding the batch size prevents the live set from exceed-
ing cache capacities and avoids transmit queue starvation.
Batching improves packet rate because it amortizes system
call transition overheads and improves instruction cache lo-
cality, prefetching effectiveness, and branch prediction ac-
curacy. When applied adaptively, batching also decreases la-
tency because these same efficiencies reduce head-of-line
blocking.

4.2 Dynamic NIC Configuration
Modern NICs provide hardware mechanisms such as VMDq,
Flow Director [17], and Receive Side Scaling (RSS) [36] to
direct traffic to one of multiple queues, as an essential mech-
anism for multicore scalability. For example, the Intel x520

relies on an on-chip table (called the RSS Redirection Ta-
ble or RETA [17]) to partition flows into multiple queues:
on the data path, the NIC first computes the Toeplitz hash
function of the packet 5-tuple header (as specified by RSS),
and uses the lower 7 bits of the result as an index into the
RETA table. A flow group is the set of network flows with an
identical RETA index. The host updates the table using PCIe
writes on a distinct control path, which can lead to packet
reordering [52].

Such anomalies have severe consequences in general
on the performance of the TCP/IP networking stack [24].
IX’s coherence-free design exposes a further constraint: be-
cause there are no locks within the TCP/IP stack, two elastic
threads cannot process packets from the same flow simulta-
neously. For correctness, packets received by the thread that
does not own the flow group must be dropped. This further
negatively impacts network performance.

The IX dataplane implements the actual flow group mi-
gration and relies on the RETA to change the mappings. The
challenge is to design a migration mechanism that updates
the steering of packets to different queues (and by extension
to different threads) without (i) impacting the steady state
performance of the dataplane and its coherence-free design;
or (ii) creating network anomalies during migration such as
dropping packets or processing them out of order in the net-
working stack.

4.3 Control Loop
We first describe the control loop at the heart of IX’s dy-
namic controller, implemented within the control plane. The
controller adjusts processor resources by suspending and
resuming IX elastic threads, and specifying the mapping
between flow groups and threads. It migrates flow groups
from multiple existing threads to a newly resumed thread,
and conversely from a thread to be suspended to the re-
maining threads. For the server consolidation scenario, the
control loop also allocates resources dedicated to the back-
ground applications. In our experimental setup, it simply is-
sues SIGSTOP and SIGCONT signals to transparently con-
trol the background application.

The control loop does not depend on any detailed charac-
terization of the Pareto frontier of §3.1. Instead, it merely im-
plements the derived, high-level policy of §3.2 using queuing
delay estimates. Specifically, the user sets the upper bound
on the acceptable queuing delay; in our experiments, with
memcached characterized by high packet rates and low ser-
vice times, we set the acceptable bound at 300µs to minimize
latency violations , given our SLO of 500µs at the 99th per-
centile, as measured end-to-end by the client machine.

For this, we rely on a key side effect of IX’s use of adap-
tive batching: unprocessed packets that form the backlog
are queued in a central location, namely in step (1) in the
pipeline of Fig. 4. Packets are then processed in order, in
bounded batches to completion through both the networking
stack and the application logic. In other words, each IX core
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operates like a simple FIFO queuing server, onto which clas-
sic queuing and control theory principles can be easily ap-
plied. In contrast, conventional operating systems distribute
buffers throughout the system: in the NIC (because of coa-
lesced interrupts), in the driver before networking process-
ing, and in the socket layer before being consumed by the
application. Furthermore, these conventional systems pro-
vide no ordering guarantees across flows, which makes it
difficult to pinpoint congestion.

To estimate queuing delays, the controller monitors the
iteration time τ and the queue depth Q. With B the maximal
batch size, the tail latency is∼max(delay) = dQ/Be∗τ . The
dataplane computes each instantaneous metric every 10ms
for the previous 10ms interval. As these metrics are subject
to jitter, the dataplane computes the exponential weighted
moving averages using multiple smoothing factors (α) in
parallel. For example, we track the queue depth as Q(t,α) =
α ∗Qnow +(1−α) ∗Q(t− 1,α). The control loop executes
at a frequency of 10 Hz, which is sufficient to adapt to load
changes.

Deciding when to remove resources is trickier than de-
ciding when to add them, as shallow and near-empty queues
do not provide reliable metrics. Instead, we measure idle
time and observe that each change in the configuration adds
or removes a predictable level of throughput: (i) increas-
ing cores from n to n+ 1 increases throughput by a factor
of 1/n; (ii) enabling hyperthreads adds 30% (for our fore-
ground workload at least); and (iii) the core’s performance
is largely proportional to its clock rate. We can therefore
define the function threshold[ f rom, to] as the ratio of max
throughput between the f rom and to configurations. When
operating at configuration f rom and the idle time exceeds
threshold[ f rom, to] we can safely switch to configuration to
without loss of performance.

These settings are not universal, as a number of assump-
tions such as load changes, requests bursts, and variations
in request service times, will noticeably affect the metrics.
These are policies, not mechanisms. In particular, there is an

inherent tradeoff between aggressive energy saving policies,
which may lead to SLO violations, and conservative poli-
cies, which will consume an excessive amount of energy.
Fortunately, the policy can be easily modified: the dataplane
exposes naturally all relevant metrics, and the control plane
daemon is∼500 lines of Python, including∼80 lines for the
control loop.

4.4 Data Structures for Coherence-free Execution
We designed our memory management and data structure
layout to minimize the performance impact of flow group
migration and to preserve the coherence-free property of our
dataplane in the steady-state. Our memory allocator draws
inspiration from magazine-based SLAB allocation [7]. Each
thread maintains a thread-local cache of every data type.
If the size of the thread-local cache exceeds a threshold,
memory items are returned, using traditional locking, to a
shared memory pool. Such rebalancing events are common
during flow group migration but infrequent during normal
operation.

We further organize our data structures so the pointer
references building linked lists, hash tables, etc., are only
between objects either both permanently associated with the
same thread (per-cpu), or both permanently associated with
the same flow group (per-fg), or both global in scope. As
a result, we can efficiently transfer ownership of an entire
flow-group’s data structures during migration while avoiding
locking or coherence traffic during regular operation.

For example, the event condition arrays, batch syscall
arrays, timer wheels, incoming and outgoing descriptor
rings, posted and pending mbufs are all per-cpu. The
protocol control blocks, 5-tuple hash table, listening sock-
ets, TW WAIT queues, out-of-order fragments, and unac-
knowledged sequences, are all per-fg. The ARP table is
global. Some objects change scope during their lifetime,
but only at well-defined junctures. For example, an mbuf is
part of the per-cpu queue while waiting to be processed
(step 1 in Fig. 4), but then becomes part of per-fg struc-
tures during network processing.



A global data structure, the software flow group table,
manages the entry points into the per-fg structures. Intel
NICs conveniently store the RSS hash result as meta-data
along with each received packet; the bottom bits are used to
index into that table.

We encountered one challenge in the management of TCP
timers. We design our implementation to maximize normal
execution performance: each thread independently manages
its timers as a hierarchical timing wheel [49], i.e., as a per-
cpu structure. As a consequence, a flow group migration
requires a scan of the hierarchical wheels to identify and
remove pending timers during the hold phase of Fig. 5a;
those will be restored later in the destination thread, at the
release phase of the flow group migration.

4.5 Flow Group Migration
When adding or removing a thread, the dynamic controller
generates a set of migration requests. Each individual re-
quest is for a set of flow groups (fgs) currently handled
by one elastic thread A to be handled by elastic thread B. To
simplify the implementation, the controller serializes the mi-
gration requests and the dataplane assumes that at most one
such request is in progress at any point in time.

Each thread has three queues that can hold incoming net-
work packets: the defaultQ contains packets received dur-
ing steady state operation, when no flow group migration is
pending; the remoteQ contains packets belonging to outgo-
ing flow groups; the localQ contains packets belonging to
incoming flow groups. The use of these two extra queues
is critical to ensure the processing of packets in the proper
order by the networking stack.

Fig. 5 illustrates the migration steps in a thread-centric
view (Fig. 5a) and in a packet-centric view (Fig. 5b). The
controller and the dataplane threads communicate via lock-
free structures in shared memory. First, the controller signals
A to migrate fgs to B. A first marks each flow group of the
set fgs with a special tag to hold off normal processing on
all threads, moves packets which belong to the flow group
set fgs from defaultQ-A to remoteQ-B and stops all
timers belonging to the flow group set. A then reprograms
the RETA for all entries in fgs. Packets still received by
A will be appended to remoteQ-B; packets received by B
will go to localQ-B.

Upon reception of the first packet whose flow group be-
longs to fgs by B, B signals A to initiate the final stage
of migration. Then, B finalizes the migration by re-enabling
fgs’s timers, removing all migration tags, and pre-pending
to its defaultQ-B the packets from remoteQ-B and
the packets from localQ-B. Finally, B notifies the con-
trol plane that the operation is complete. There are obviously
corner-cases and subtleties in the algorithm. For example, A
installs a migration timer to finalize the migration even if B
has not yet received any packets. We set the timeout to 1 ms.

5. Evaluation
We use three synthetic, time-accelerated load patterns to
evaluate the effectiveness of the control loop under stressful
conditions. All three vary between nearly idle and maximum
throughput within a four minute period: the slope pattern
gradually raises the target load from 0 and 6.2M RPS and
then reduces its load; the step pattern increases load by 500
KRPS every 10 seconds; and finally the sine+noise pattern
is a basic sinusoidal pattern modified by randomly adding
sharp noise that is uniformly distributed over [-250,+250]
KRPS and re-computed every 5 seconds. The slope pattern
provides a baseline to study smooth changes, the step pattern
models abrupt and massive changes, while the sine+noise
pattern is representative of daily web patterns [48].

Fig. 6 and Fig. 7 show the results of these three dynamic
load patterns for the energy proportionality and workload
consolidation scenarios. In each case, the top figure mea-
sures the observed throughput. They are annotated with the
control loop events that add resources (green) or remove
them (red). Empty triangles correspond to core allocations
and full triangles to DVFS changes. The middle figure eval-
uates the soundness of the algorithm and reports the 99th
percentile latency, as observed by a client machine and re-
ported every second. Finally, the bottom figures compare the
overall efficiency of our solution based on dynamic resource
controls with (i) the maximal static configuration, using all
cores and Turbo Boost, and (ii) the ideal, synthetic efficiency
computed using the Pareto frontier of Fig. 2
Energy Proportionality: Fig. 6 shows the behavior for the
energy efficiency scenario. In each case, the workload tracks
the desired throughput of the pattern and exercises the en-
tire sequence of configurations, gradually adding cores, en-
abling hyperthreading, increasing the frequency and finally
enabling Turbo Boost, before doing it in reverse. The step
pattern is particularly challenging, as the instant change in
load level requires multiple, back-to-back, configurations
changes. With a few exceptions, the latencies remain well
below the 500µs SLO. We further discuss the violations be-
low. Finally, Fig. 6 (bottom) compares the power dissipated
by the workload with the corresponding power levels as de-
termined by the Pareto frontier (lower bound) or the max-
imum static configuration (upper bound). This graph mea-

Smooth Step Sine+noise
Energy Proportionality (W)

Max. power 91 92 94
Measured 42 (-54%) 48 (-48%) 53 (-44%)
Pareto bound 39 (-57%) 41 (-55%) 45 (-52%)

Server consolidation opportunity (% of peak)
Pareto bound 50% 47% 39%
Measured 46% 39% 32%

Table 1: Energy Proportionality and Consolidation gains.
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Figure 6: Energy Proportionality of memcached running on IX for three load patterns.

sures the effectiveness of the control loop to maximize en-
ergy proportionality. We observe that the dynamic (actually
measured) power curve tracks the Pareto (synthetic) curve
well, which defines a bound on energy savings. When the dy-
namic resource controls enters Turbo Boost mode, the mea-
sured power in all three cases starts at the lower end of the
4 W range and then gradually rises, as expected. Table 1
shows that the three patterns have Pareto savings bounds of
52%, 55% and 57%. IX’s dynamic resource controls results
in energy savings of 44%, 48% and 54%, which is 85%, 87%
and 93% of the theoretical bound.
Consolidation: Fig. 7 shows the corresponding results for
the workload consolidation scenarios. Fig. 7 (top) measures
the observed load, which here as well tracks the desired load.
Recall that the consolidation policy always operates at the
processor’s nominal rate (or Turbo), which limits the number
of configuration changes. Fig. 7 (middle) similarly confirms
that the system meets the SLO, with few exceptions. Fig. 7
(bottom) plots the throughput of the background batch appli-
cation, expressed as a percentage of its throughput on a dedi-
cated processor at 2.4 Ghz. We compare it only to the Pareto
optimal upper bound as a maximum configuration would
monopolize cores and deliver zero background throughput.
Table 1 shows that, for these three patterns, our consolida-
tion policy delivers 32%–46% of the standalone throughput

of the background job, which corresponds to 82%–92% of
the Pareto bound.
SLO violations: A careful study of the SLO violations of the
6 runs shows that they fall into two categories. First, there are
16 violations caused by delays in packet processing due to
flow group migrations resulting from the addition of a core.
Second, there are 9 violations caused by abrupt increase of
throughput, mostly in the step pattern, which occur before
any flow migrations. The control plane then reacts quickly
(in ∼100 ms) and accommodates to the new throughput by
adjusting resources. To further confirm the abrupt nature of
throughput increase specific to the step pattern, we note that
the system performed up three consecutive increases in re-
sources in order to resolve a single violation. 23 of the 25
total violations last a single second, with the remaining two
violations lasting two seconds. We believe that the compli-
ance with the SLO achieved by our system is more than ad-
equate for any practical production deployment.
Flow group migration analysis: Table 2 measures the la-
tency of the 552 flow group migrations that occur during the
6 benchmarks, as described in §4.5. It also reports the total
number of packets whose processing is deferred during the
migration (rather than dropped or reordered). We first ob-
serve that migrations present distinct behaviors when scaling
up and when scaling down the number of cores. The differ-
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Figure 7: Consolidation of memcached with a background batch task.

ence can be intuitively explained since the migrations during
the scale up are performed in a heavily loaded system, while
the system during the scale down is partially idle. In absolute
terms, migrations that occur when adding a core take 463µs
on average and less than 1.5 ms 95% of the time. The outliers
can be explained by rare occurrences of longer preparation
times or when processing up to 614 deferred packets.

6. Discussion
Using Pareto as a guide: Even though the Pareto results
are not used by the dynamic resource controller, the Pareto
frontier proved to be a valuable guide, first to motivate and
quantify the problem, then to derive the configuration pol-
icy sequence, and finally to evaluate the effectiveness of
the dynamic resource control by setting an upper bound on
the gains resulting from dynamic resource allocation. Many
factors such as software scalability, hardware resource con-
tention, network and disk I/O bottlenecks, will influence the
Pareto frontier of any given application, and therefore the de-
rived control loop policies. We will compare different work-
loads in future work.
Tradeoff between average latency and efficiency: We use
a one-dimensional SLO (99th pct. ≤ 500µs.) and show that
we can increase efficiency while maintaining that objective.
However, this comes at a cost when considering the entire
latency distribution, e.g. the average as well as the tail. More

complex SLOs, taking into account multiple aspects of la-
tency distribution, would define a different Pareto frontier,
and likely require adjustments to the control loop.
Adaptive, flow-centric scheduling: The new flow-group
migration algorithm leads to a flow-centric approach to re-
source scheduling, where the network stack and application
logic always follow the steering decision. POSIX applica-
tions can balance flows by migrating file descriptors between
threads or processes, but this tends to be inefficient because
it is difficult for the kernel to match the flow’s destination
receive queue to changes in CPU affinity. Flow director can
be used by Linux to adjust the affinity of individual network
flows as a reactive measure to application-level and kernel
thread migration rebalancing, but the limited size of the redi-
rection table prevents this mechanism from scaling to large
connection counts. By contrast, our approach allows flows
to be migrated in entire groups, improving efficiency, and is
compatible with more scalable hardware flow steering mech-
anisms based on RSS.
Hardware trends: Our experimental setup using one Sandy
Bridge processor has a three-dimensional Pareto space.
Clearly, NUMA would add a new dimension. Also, the
newly released Haswell processors provide per-core DVFS
controls, which further increases the Pareto space. More-
over, hash filters for flow group steering could benefit from
recent trends in NIC hardware. For example, Intel’s new



avg 95th pct. max. stddev
ad

d
co

re
prepare (µs) 67 231 521 93
wait (µs) 135 541 983 190
rpc (µs) 129 355 529 112
deferred (µs) 101 401 1167 147
total (µs) 463 1432 2870 459
# packets 64 319 614 116

re
m

ov
e

co
re prepare (µs) 25 54 398 32

wait (µs) 34 101 170 32
rpc (µs) 12 25 49 7
deferred (µs) 19 43 108 14
total (µs) 93 160 456 47
# packets 3 8 28 3

Table 2: Breakdown of flow group migration measured dur-
ing the six benchmarks.

XL710 chipset [19], has a 512 entry hash LUT (as well as
independent 64 entry LUTs for each VF) in contrast to the
128 entries available in the 82599 chipset [17] used in our
evaluation. This has the potential to reduce connection im-
balances between cores, especially with high core counts.

7. Related Work
Scheduling: Scheduler activations [1] give applications
greater control over hardware threads and provide a mecha-
nism for custom application-level scheduling. Callisto [13]
uses a similar strategy to improve the performance of co-
located parallel runtime systems. Our approach differs in
that an independent control plane manages the scheduling
of hardware threads based on receive queuing latency indi-
cators while the dataplane exposes a simple kernel thread-
ing abstraction. SEDA [51] also monitors queuing behavior
to make scheduling decisions such as thread pool sizing.
Chronos [21] makes use of software-based flow steering, but
with a focus on balancing load to reduce latency. Affinity
Accept [42] embraces a mixture of software and hardware-
based flow steering in order to improve TCP connection
affinity and increase throughput. We focus instead on energy
proportionality and workload consolidation.
Energy Proportionality: The energy proportionality prob-
lem [3] has been well explored in previous work. Some
systems have focused on solutions tailored to throughput-
oriented workloads [33] or read-only workloads [23]. Meis-
ner et. al. [34] highlight unique challenges for low la-
tency workloads and advocate full system active low-power
modes. Similar to our system, Pegasus [29] achieves CPU
energy proportionality for low latency workloads. Our work
expands on Pegasus by exploring the elastic allocation of
hardware threads in combination with processor power man-
agement states and by basing scheduling decisions on in-
ternal latency metrics within a host endpoint instead of an
external controller. Niccolini et. al. show that a software
router, running on a dedicated machine, can be made energy-

proportional [38]. Similar to our approach, queue length
is used as a control signal to manage core allocation and
DVFS settings. However, we focus on latency-sensitive ap-
plications, rather than middlebox traffic, and consider the
additional case of workload consolidation.
Co-location: Because host endpoints contain some com-
ponents that are not energy proportional and thus are most
efficient when operating at 100% utilization, co-location of
workloads is also an important tool for improving energy
efficiency. At the cluster scheduler level, BubbleUp [32] and
Paragon [10] make scheduling decisions that are interference-
aware through efficient classification of the behavior of
workload co-location. Leverich et. al. [26] demonstrate
that co-location of batch and low latency jobs is possi-
ble on commodity operating systems. Our approach ex-
plores this issue at higher throughputs and with tighter la-
tency SLOs. Bubble-Flux [53] additionally controls back-
ground threads; we control background and latency-sensitive
threads. CPI2 [54] detects performance interference by ob-
serving changes in CPI and throttles offending jobs. This
work is orthogonal to ours and could be a useful addi-
tional signal for our control plane. Heracles manages mul-
tiple hardware and software isolation mechanisms, includ-
ing packet scheduling and cache partitioning, to co-locate
latency-sensitive applications with batch tasks while main-
taining millisecond SLOs [30]. We limit our focus to DVFS
and core assignment but target more aggressive SLOs.
Low-latency frameworks: User-level networking stacks [20,
31, 47] and RDMA applications [12, 37, 40] all rely on
polling, typically by a fixed number of execution threads,
to deliver µs-scale response times. These stacks and appli-
cations are evaluated based on their latency and throughput
characteristics, and do not take into account energy propor-
tionality or workload consolidation considerations.

8. Conclusion
We present the design and implementation of dynamic re-
source controls for the IX dataplane, which consists of a
controller that allocates cores and sets processor frequency
to adapt to changes in the load of latency-sensitive appli-
cations. The novel rebalancing mechanisms do not impact
the steady-state performance of the dataplane and can mi-
grate a set of flow groups in milliseconds without dropping
or reordering packets. We develop two policies focused on
optimizing energy proportionality and workload consolida-
tion. Our results show that, for three varying load patterns,
the energy proportionality can save 44%–54% of the pro-
cessor’s energy, or enable a background job to deliver 32%–
46% of its standalone throughput. To evaluate the effective-
ness of our approach, we synthesize the Pareto frontier by
combining the behavior of all possible static configurations.
Our policies deliver 85%–93% of the Pareto optimal bound
in terms of energy proportionality, and 82%–92% in terms
of consolidation.
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