Samuel
UCLA School of Engineering

Hermit: Low-Latency, High-Throughput, and Transparent
Remote Memory via Feedback-Directed Asynchrony

Yifan Qiao, Chenxi Wang, Zhenyuan Ruan,
Adam Belay, Qingda Lu, Yiying Zhang, Miryung Kim, Guogqing Harry Xu

Datacenter Must Balance Latency With Utilization

Intel®
Rack Scale
M5 | Design

Hot Storage
&
arm Storage 3
2
Accelerator] D
Z
c
Physical
Pools

LD
LD
LOLD
LD

Latency-Critical Applications Remote Memory Systems

Samueli
UCLA School of Engineering

Remote Memory Systems

Host Server

EXelelele]

Remote Memory Pool

I 80 ns

Fast Network

S (e.9., RDMA, CXL)
.
Kernel Swap System < > N
‘ 3-8us V

1o .\ Samueli
School of Engineering Network: Mellanox ConnectX-5 Ex (100 GbE, 7 ps for a 4 KB page) 3

Kernel Swap Can Incur High Tail Latency

1914x higher tail latency!

=
o

Host Server

@ 0000

o
0

o
o

v Pool

©
N

o
(N)

—>
8
=
7
CDF of
Remote access latency

8 us :
oo J (e.g., 101 102 103 104

o
o

] Latency (us)
Klernel Swap System <

—7 7 2

1o .\ Samueli
School of Engineering Network: Mellanox ConnectX-5 Ex (100 GbE, 7 ps for a 4 KB page) 4

Where Does the Latency Come From?

Application
User remote access
____________________ -===F 0.2us
Kernel Fault -l H

Page Reclamation

Deduplicate Swap-ins

Remote Memory

Samueli
UCLA School of Engineering

Where Does the Latency Come From?

Application

Page Reclamation remote access 1180 us (32 pages)
(Occasionally)

Deduplicate Swap-ins

Remote Memory

Samueli
UCLA School of Engineering Network: Mellanox ConnectX-5 Ex (100 GbE)

Where Does the Latency Come From?

Application
User
Kernel
Page Reclamation 1180 us
Deduplicate Swap-ins | remote access 2.8 us

Remote Memory

Samueli
UCLA School of Engineering Network: Mellanox ConnectX-5 Ex (100 GbE)

Where Does the Latency Come From?

Application

Page Reclamation

Deduplicate Swap-ins

remote access

Remote Memory

Samueli
UCLA School of Engineering

1180 us

2.8 us
1.3 ys

Network: Mellanox ConnectX-5 Ex (100 GbE)

Where Does the Latency Come From?

Application
User
Kernel
Page Reclamation 1180 us
Deduplicate Swap-ins 2.8 us

1.3 ys

0.2 ps

Remote Memory

Samueli
UCLA School of Engineering Network: Mellanox ConnectX-5 Ex (100 GbE)

Where Does the Latency Come From?

Application
User
Kernel
Page Reclamation 1180 us
Deduplicate Swap-ins 2.8 us
1.3 ys
0.2 us
Remote Memory remote access 9.1 us

Samueli
UCLA School of Engineering Network: Mellanox ConnectX-5 Ex (100 GbE) 10

Where Does the Latency Come From?

Application
User remote access

Page Reclamation
(Occasionally)

Deduplicate Swap-ins

Remote Memory

Samueli
UCLA School of Engineering

1180 us

2.8 us
1.3 ys
0.2 us

9.1 us

| Kernel Swap
(>32%)

J- Hardware

Network: Mellanox ConnectX-5 Ex (100 GbE)

11

How To Reduce Latency?

Application

Page Reclamation

Deduplicate Swap-ins

Remote Memory

Samueli
UCLA School of Engineering

Kernel Bypassing Is Not a Panacea

Application

Lose Transparency

Page Reclamation _
Lose kernel protection &

isolation

Deduplicate Swap-ins

Remote Memory User Managed

L“Can we eliminate performance bottlenecks in the kernel directly?

Samu
UCLA School of Engineering 13

Can Asynchrony Reduce Latency?

Application
User remote access [«
[T Tr No data dependency!
Make it asynchronous!
Page Reclamation |[1180 us
Deduplicate Swap-ins 2.8 us
1.3 ys
0.2 us
Remote Memory 9.1 us

Samueli
UCLA School of Engineering Network: Mellanox ConnectX-5 Ex (100 GbE)

Naive Asynchrony Is Not Enough

* Linux: kswapd

» Fastswap [EuroSys’20]: dedicated core

Application

————————————————————————— - Reclaim Thread
Kernel | pDeduplicate Swap-ins

Page Reclamation

Remote Memory

Samueli
UCLA School of Engineering

Naive Asynchrony Is Not Enough

Application

FEE® RECEIMENE Statically Controlled

Reclaim Thread

Deduplicate Swap-ins

Page Reclamation

Remote Memory

Samueli
UCLA School of Engineering

Must Have Controlled Asynchrony

+» When to start reclamation?
** How many cores for reclamation?

Application Dynamically Controlled

————————————————————————— - Reclaim Thread

Kernel | peduplicate Swap-ins

Page Reclamation

Remote Memory

Samueli
UCLA School of Engineering

17

Challenge #1: When To Start Reclamation

Application

CPU Core 1 Core 2 Core 3 Core 4

|

Memory !
Usage !
1

|

When to start reclamation?

Samueli
UCLA School of Engineering

Challenge #1: When To Start Reclamation

Application
Reclaim too early:

* Memory underutilization
CPU Core 1 Core 2 Core 3 Core 4

Memory
Usage

I Start reclamation

Samueli
UCLA School of Engineering

Challenge #1: When To Start Reclamation

Application
Reclaim too early:

* Memory underutilization
CPU Core 1 Core 2 Core 3 Core 4

Reclaim too late:
Usage

\ J

I Start reclamation

Samueli
UCLA School of Engineering

20

Challenge #2: How Many Cores For Reclamation

/v Taken by reclaim threads

Application
Too few cores:

Memory exhaustion

CPU Core 1 Core 2 Core 3 Core 4

Samueli
UCLA School of Engineering 21

Challenge #2: How Many Cores For Reclamation

m Taken by reclaim threads

CPU Core 1

Memory

\

Arﬁcatio?/

Core 2 Core 3

Core 4

\

J

Samueli

School of Engineering

Too few cores:
» Memory exhaustion

Too many cores:
» Interfere user threads

22

Hermit Design: Feedback-Directed Asynchrony

Application g ™\
e | _ @ .
Kernel | Deduplicate Swap-ins Reclaim JJ
§ Threads
— J
Feedback
Remote Memory | > Reclaim Scheduler

Samueli
UCLA School of Engineering

Hermit’s Adaptive Reclaim Scheduling

Max # Cores

Cores for |
Reclamation :
Ll etttk ° |
0 o —
Low-Water High-Water Limit
Mark Mark

Local Memory Usage

Samueli
UCLA School of Engineering

24

Hermit’s Adaptive Reclaim Scheduling

+» When to start reclamation?

Max # Cores

Cores for
Reclamation

Local Memory
Usage

Low-Water High-Water
Mark Mark

Samueli
UCLA School of Engineering 25

Hermit’s Adaptive Reclaim Scheduling

+» When to start reclamation?

Max # Cores

Cores for
Reclamation

Local Memory
Usage

Low-Water High-Water
Mark Mark

Samueli
UCLA School of Engineering 26

Hermit’s Adaptive Reclaim Scheduling

** How many cores for reclamation?

Max # Cores

Cores for
Reclamation

Local Memory
Usage

Low-Water High-Water
Mark Mark

Samueli
UCLA School of Engineering

27

Hermit’s Adaptive Reclaim Scheduling

D ically Adj
Max # Cores ynamically Adjust

Cores for
Reclamation

Low-Water High-Water ~Limit
Mark Mark

Local Memory Usage

Samueli
UCLA School of Engineering

28

Hermit’s Adaptive Reclaim Scheduling

Max # Cores

Cores for |
Reclamation :
|

High-Water Limit
Mark

o Swap in throughput

Samueli
UCLA School of Engineering

Hermit’s Adaptive Reclaim Scheduling

Page Turnaround (PT): how long a swapped-out page remains untouched

Max # Cores

Cores for |
Reclamation :
21 -— d !
0 L
Low-Water Limit
Mark
When PT remains high

Samueli
UCLA School of Engineering

Hermit Achieves Low Latency

Application

User .
Deduplicate Swap-ins Overlapped with § Reclaim JJ
/0 Threads

—

Reclaim Scheduler

Remote Memory

Samueli
UCLA School of Engineering

31

How To Improve Throughput?

Latency-critical path

Application

Kernel | Deduplicate Swap-ins

Metadata Bookkeeping

Remote Memory

Samueli
UCLA School of Engineering

Non-critical path

-~

Reclaim Thread

\

Page Reclamation

/

—

Reclaim Scheduler

32

Aggressive Batching For Async. Reclamation

Non-critical path

Batched operations for a group of pages:

. TLB Shootdown / \

* Page I/O Write | Reclaim Thread
* cgroup Accounting \
. eflc. e

I/

Page Reclamation

———

Reclaim Scheduler

2.9x more CPU efficient

Samueli
UCLA School of Engineering

Evaluation

Evaluated 6 real-world cloud applications with varying local memory ratios

o Latency-Critical: Memcached, SocialNet, Gdnsd
o Batch-Processing: Spark, XGBoost, Cassandra

State of the art: Fastswap [EuroSys’20]
o Offload page reclamation to a single dedicated core

» How does Hermit maintain low end-to-end tail latency?

» How does Hermit improve application throughput?

Samueli
UCLA School of Engineering

34

Low Tail Latency

. Memcached with Facebook USR workload.

gSOO-
5’400_
c 300+
Q

w© 200+
1

100+

99%

0

Samueli
UCLA School of Engineering

1

2 3
Offered load (Mops)

35

Low Tail Latency

. Memcached with Facebook USR workload.

gSOO-
5’400_
c 300+
)

w© 200+
_

100+

L R g S ——

99%

0

Samueli
UCLA School of Engineering

1 2 3 4
Offered load (Mops)

- == All local

36

Low Tail Latency

. Memcached with Facebook USR workload.
+» Cache 70% of working set in local memory (i.e., 30% in remote memory).
N _
E) 500
> 400y 4x throughput drop!
U A A
c 3007 < >
3
o 2007
-

100¢ 7

0 i 2 35 4
Offered load (Mops)

- == All local

- Fastswap
(state of the art)

L R g S ——

99%
j

Samueli
UCLA School of Engineering

Low Tail Latency

. Memcached with Facebook USR workload.

D)

gSOO-
5’400_
c 300¢
0]

w© 200+t

100 _

|

99.7% lower

% Cache 70% of working set in local memory (i.e., 30% in remote memory).

L R g S ——

99% L

0

1 2 3 4
Offered load (Mops)

Samueli
UCLA School of Engineering

- == All local
- Fastswap
—6— Hermit

38

High Throughput

. Memcached with Facebook USR workload.

+» Cache 70% of working set in local memory (i.e., 30% in remote memory).

gSOO-
5’400_
c 300+
Q
w© 200+
_

99%

100 _

|

3.2X higher

L R g S ——

0

1 2 3 4
Offered load (Mops)

Samueli
UCLA School of Engineering

- == All local
- Fastswap
—6— Hermit

39

High Throughput

. Memcached with Facebook USR workload.

+» Cache 70% of working set in local memory (i.e., 30% in remote memory).
in:i- 500
> 400+
c 300¢
Q

© 2007
-

100
0 i 2 3 4

Offered load (Mops)

- == All local
- Fastswap
—6— Hermit

L g ——

99%

Samueli
UCLA School of Engineering

High Throughput For Batch Applications

Three batch processing applications under varying local memory ratio

c 4
3 m Fastswap mHermit
03

©

; I

= 0

n

@ l Hm B
- | B | B |
€0

S 20% 40% 60%

Local Memory Ratio

Hermit offers 1.24x higher throughput (up to 1.87x)

41

Conclusion

Low latency, high throughput, and transparency can be achieved simultaneously!

% Asynchrony reduces latency and improves throughput
% Feedback loop is critical to the effect of asynchrony

% Design can be generalized to other kernel components such as page migration
for CXL-attached memory

s Hermit offers up to 99.7% lower latency and 1.24x higher throughput without
changing a single line of user code

https://github.com/uclasystem/hermit

Samueli
UCLA School of Engineering

42

https://github.com/uclasystem/hermit

Thank You!

Samueli
UCLA School of Engineering

