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Datacenter Must Balance Latency With Utilization

Intel®
Rack Scale
M5 | Design

Hot Storage
&
arm Storage 3
2
Accelerator ] D
Z
c
Physical
Pools

LD
LD
LOLD
LD

Latency-Critical Applications Remote Memory Systems

Samueli
UCLA School of Engineering



Remote Memory Systems
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Kernel Swap Can Incur High Tail Latency

1914x higher tail latency!
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Where Does the Latency Come From?
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Where Does the Latency Come From?
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Where Does the Latency Come From?
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Where Does the Latency Come From?
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Where Does the Latency Come From?
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Where Does the Latency Come From?
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How To Reduce Latency?
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Kernel Bypassing Is Not a Panacea
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Can Asynchrony Reduce Latency?
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Naive Asynchrony Is Not Enough

* Linux: kswapd

» Fastswap [EuroSys’20]: dedicated core
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Naive Asynchrony Is Not Enough
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Must Have Controlled Asynchrony

+» When to start reclamation?
** How many cores for reclamation?
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Challenge #1: When To Start Reclamation
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Challenge #1: When To Start Reclamation
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Challenge #1: When To Start Reclamation
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Challenge #2: How Many Cores For Reclamation

/v Taken by reclaim threads
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Challenge #2: How Many Cores For Reclamation
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Hermit Design: Feedback-Directed Asynchrony
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Hermit’s Adaptive Reclaim Scheduling
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Hermit’s Adaptive Reclaim Scheduling
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Hermit’s Adaptive Reclaim Scheduling

+» When to start reclamation?
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Hermit’s Adaptive Reclaim Scheduling

** How many cores for reclamation?
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Hermit’s Adaptive Reclaim Scheduling
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Hermit’s Adaptive Reclaim Scheduling
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Hermit’s Adaptive Reclaim Scheduling

Page Turnaround (PT): how long a swapped-out page remains untouched
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Hermit Achieves Low Latency
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How To Improve Throughput?
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Aggressive Batching For Async. Reclamation

Non-critical path
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Evaluation

Evaluated 6 real-world cloud applications with varying local memory ratios

o Latency-Critical: Memcached, SocialNet, Gdnsd
o Batch-Processing: Spark, XGBoost, Cassandra

State of the art: Fastswap [EuroSys’20]
o Offload page reclamation to a single dedicated core

» How does Hermit maintain low end-to-end tail latency?

» How does Hermit improve application throughput?

Samueli
UCLA School of Engineering

34



Low Tail Latency

. Memcached with Facebook USR workload.
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Low Tail Latency
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Low Tail Latency

. Memcached with Facebook USR workload.
+» Cache 70% of working set in local memory (i.e., 30% in remote memory).
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Low Tail Latency

. Memcached with Facebook USR workload.
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High Throughput

. Memcached with Facebook USR workload.
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High Throughput

. Memcached with Facebook USR workload.

+» Cache 70% of working set in local memory (i.e., 30% in remote memory).
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High Throughput For Batch Applications

Three batch processing applications under varying local memory ratio
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Hermit offers 1.24x higher throughput (up to 1.87x)
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Conclusion

Low latency, high throughput, and transparency can be achieved simultaneously!

% Asynchrony reduces latency and improves throughput
% Feedback loop is critical to the effect of asynchrony

% Design can be generalized to other kernel components such as page migration
for CXL-attached memory

s Hermit offers up to 99.7% lower latency and 1.24x higher throughput without
changing a single line of user code

https://github.com/uclasystem/hermit
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https://github.com/uclasystem/hermit

Thank You!
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