
Hermit: Low-Latency, High-Throughput, and Transparent
Remote Memory via Feedback-Directed Asynchrony

Yifan Qiao, Chenxi Wang, Zhenyuan Ruan,
Adam Belay, Qingda Lu, Yiying Zhang, Miryung Kim, Guoqing Harry Xu

2

Datacenter Must Balance Latency With Utilization

Latency-Critical Applications Remote Memory Systems

3

Remote Memory Systems

Kernel Swap System

Fast Network
(e.g., RDMA, CXL)

Remote Memory Pool

Local Memory

Host Server

CPU
80 ns

3 – 8 µs

Network: Mellanox ConnectX-5 Ex (100 GbE, 7 µs for a 4 KB page)

Kernel Swap System

Remote Memory Pool

Local Memory

Host Server

CPU
80 ns

4

Kernel Swap Can Incur High Tail Latency

8 – 1992 µs

1914x higher tail latency!

Fast Network
(e.g., RDMA, CXL)

 1992 μs42 μs

8 μs

C
D

F
of

R
em

ot
e

ac
ce

ss
la

te
nc

y

8 μs

Latency (μs)

42 μs 1992 μs

Network: Mellanox ConnectX-5 Ex (100 GbE, 7 µs for a 4 KB page)

5

Where Does the Latency Come From?
Application

Page Reclamation

Deduplicate Swap-ins

Metadata Bookkeeping

Fetch & Prefetch

User
Kernel

remote access

Remote Memory

Fault
0.2 μs

6

Where Does the Latency Come From?
Application

Page Reclamation
(Occasionally)

1180 μs (32 pages)

Deduplicate Swap-ins

Metadata Bookkeeping

Fetch & Prefetch

User
Kernel

remote access

Remote Memory

Network: Mellanox ConnectX-5 Ex (100 GbE)

7

Where Does the Latency Come From?
Application

Page Reclamation

Deduplicate Swap-ins 2.8 μs

Metadata Bookkeeping

Fetch & Prefetch

User
Kernel

remote access

1180 μs

Remote Memory

Network: Mellanox ConnectX-5 Ex (100 GbE)

8

Where Does the Latency Come From?
Application

Page Reclamation

Deduplicate Swap-ins

Metadata Bookkeeping 1.3 μs

Fetch & Prefetch

User
Kernel

remote access

2.8 μs

1180 μs

Remote Memory

Network: Mellanox ConnectX-5 Ex (100 GbE)

9

Where Does the Latency Come From?
Application

Page Reclamation

Deduplicate Swap-ins

Metadata Bookkeeping 1.3 μs

Fetch & Prefetch

User
Kernel

remote access

2.8 μs

1180 μs

0.2 μs

Remote Memory

Network: Mellanox ConnectX-5 Ex (100 GbE)

Remote Memory

10

Where Does the Latency Come From?
Application

Page Reclamation

Deduplicate Swap-ins

Metadata Bookkeeping 1.3 μs

Fetch & Prefetch

User
Kernel

remote access

2.8 μs

1180 μs

0.2 μs

Network: Mellanox ConnectX-5 Ex (100 GbE)

9.1 μs

11

Where Does the Latency Come From?
Application

Page Reclamation
(Occasionally)

1180 μs

Deduplicate Swap-ins 2.8 μs

Metadata Bookkeeping 1.3 μs

Fetch & Prefetch 0.2 μs

Hardware

User
Kernel

Kernel Swap
(>32%)

Remote Memory 9.1 μs

Network: Mellanox ConnectX-5 Ex (100 GbE)

remote access

12

Application

Page Reclamation

Deduplicate Swap-ins

Metadata Bookkeeping

Fetch & Prefetch

User
Kernel

Remote Memory

How To Reduce Latency?

Remote Memory

Lose Transparency

Lose kernel protection &
isolation

13

Kernel Bypassing Is Not a Panacea
Application

Page Reclamation

Deduplicate Swap-ins

Metadata Bookkeeping

Prefetch

User
Kernel

User Managed

Can we eliminate performance bottlenecks in the kernel directly?

14

Can Asynchrony Reduce Latency?
Application

Page Reclamation 1180 μs

Deduplicate Swap-ins 2.8 μs

Metadata Bookkeeping 1.3 μs

Fetch & Prefetch 0.2 μs

User
Kernel

Remote Memory 9.1 μs

Network: Mellanox ConnectX-5 Ex (100 GbE)

remote access
No data dependency!
Make it asynchronous!

15

Application

Deduplicate Swap-ins

Metadata Bookkeeping

Fetch & Prefetch

User
Kernel

Remote Memory

Naive Asynchrony Is Not Enough

Page Reclamation

Reclaim Thread

• Linux: kswapd

• Fastswap [EuroSys’20]: dedicated core

16

Application

Deduplicate Swap-ins

Metadata Bookkeeping

Fetch & Prefetch

User
Kernel

Remote Memory

Naive Asynchrony Is Not Enough

Page Reclamation

Reclaim Thread
Statically ControlledPage Reclamation

17

Application

Deduplicate Swap-ins

Metadata Bookkeeping

Fetch & Prefetch

User
Kernel

Remote Memory

Must Have Controlled Asynchrony

v When to start reclamation?
v How many cores for reclamation?

Page Reclamation

Reclaim Thread

Dynamically Controlled

18

Challenge #1: When To Start Reclamation

Memory
Usage

CPU

Application

Core 1 Core 2 Core 3 Core 4

When to start reclamation?

19

Challenge #1: When To Start Reclamation

CPU

Application

Wasted

Reclaim too early:
• Memory underutilization

Start reclamation

Core 1 Core 2 Core 3 Core 4

Memory
Usage

20

Challenge #1: When To Start Reclamation

CPU

Application
Reclaim too early:
• Memory underutilization

Reclaim too late:
• Memory exhaustion

Start reclamation

Core 1 Core 2 Core 3 Core 4

Memory
Usage

21

Challenge #2: How Many Cores For Reclamation

Memory

CPU

Application

Core 1 Core 2 Core 3 Core 4

Taken by reclaim threads

Too few cores:
• Memory exhaustion

22

Challenge #2: How Many Cores For Reclamation

Memory

CPU

Application

Core 1 Core 2 Core 3 Core 4

Taken by reclaim threads

Too few cores:
• Memory exhaustion

Too many cores:
• Interfere user threads

23

Hermit Design: Feedback-Directed Asynchrony

Application

Deduplicate Swap-ins

Metadata Bookkeeping

Fetch & Prefetch

User
Kernel

Remote Memory
Feedback

Page Reclamation

Reclaim Thread

Page ReclamationPage ReclamationReclaim Scheduler

Reclaim
Threads

24

Hermit’s Adaptive Reclaim Scheduling

Local Memory Usage

Cores for
Reclamation

Max # Cores

High-Water
Mark

Limit
0
1

Low-Water
Mark

25

Hermit’s Adaptive Reclaim Scheduling

Local Memory
Usage

Cores for
Reclamation

Max # Cores

High-Water
Mark

Limit
0
1

Low-Water
Mark

v When to start reclamation?

26

Hermit’s Adaptive Reclaim Scheduling

Local Memory
Usage

Cores for
Reclamation

Max # Cores

High-Water
Mark

Limit
0
1

Low-Water
Mark

v When to start reclamation?

27

Hermit’s Adaptive Reclaim Scheduling

v How many cores for reclamation?

Local Memory
Usage

Cores for
Reclamation

Max # Cores

High-Water
Mark

Limit
0
1

Low-Water
Mark

28

Hermit’s Adaptive Reclaim Scheduling

Cores for
Reclamation

Max # Cores

High-Water
Mark

Limit
0
1

Low-Water
Mark

Local Memory Usage

Dynamically Adjust

29

Hermit’s Adaptive Reclaim Scheduling

Cores for
Reclamation

Max # Cores

High-Water
Mark

Limit
0
1

∝ Swap in throughput

Low-Water
Mark

30

Hermit’s Adaptive Reclaim Scheduling

Cores for
Reclamation

Max # Cores

High-Water
Mark

Limit
0
1

Low-Water
Mark

When PT remains high

Page Turnaround (PT): how long a swapped-out page remains untouched

31

Hermit Achieves Low Latency

Page ReclamationPage ReclamationReclaim Scheduler

Reclaim
Threads

Application

Deduplicate Swap-ins

Metadata Bookkeeping

Fetch & Prefetch

User
Kernel

Remote Memory

Overlapped with
I/O

32

How To Improve Throughput?

Application

Deduplicate Swap-ins

Metadata Bookkeeping

Fetch & Prefetch

User
Kernel

Remote Memory

Latency-critical path Non-critical path

Page Reclamation

Reclaim Thread

Reclaim Scheduler

33

Aggressive Batching For Async. Reclamation

Non-critical path

Page Reclamation

Reclaim Thread

Reclaim Scheduler

Batched operations for a group of pages:
• TLB Shootdown
• Page I/O Write
• cgroup Accounting
• etc.

2.9x more CPU efficient

Ø How does Hermit maintain low end-to-end tail latency?
Ø How does Hermit improve application throughput?

Evaluated 6 real-world cloud applications with varying local memory ratios

34

Evaluation

o Latency-Critical: Memcached, SocialNet, Gdnsd
o Batch-Processing: Spark, XGBoost, Cassandra

State of the art: Fastswap [EuroSys’20]
o Offload page reclamation to a single dedicated core

1 2 3 4
Offered load (Mops)

0
100
200
300
400
500

99
%

La
te
nc
y
(μ
s)

All local
Fastswap
Hermit

35

Low Tail Latency
Memcached with Facebook USR workload.

1 2 3 4
Offered load (Mops)

0
100
200
300
400
500

99
%

La
te
nc
y
(μ
s)

All local
Fastswap
Hermit

36

Low Tail Latency
Memcached with Facebook USR workload.

1 2 3 4
Offered load (Mops)

0
100
200
300
400
500

99
%

La
te
nc
y
(μ
s)

All local
Fastswap
Hermit

37

Low Tail Latency

4x throughput drop!

State(state of the art)

Memcached with Facebook USR workload.

v Cache 70% of working set in local memory (i.e., 30% in remote memory).

1 2 3 4
Offered load (Mops)

0
100
200
300
400
500

99
%

La
te
nc
y
(μ
s)

All local
Fastswap
Hermit

38

Low Tail Latency

99.7% lower

Memcached with Facebook USR workload.

v Cache 70% of working set in local memory (i.e., 30% in remote memory).

1 2 3 4
Offered load (Mops)

0
100
200
300
400
500

99
%

La
te
nc
y
(μ
s)

All local
Fastswap
Hermit

39

High Throughput

3.2x higher

Memcached with Facebook USR workload.

v Cache 70% of working set in local memory (i.e., 30% in remote memory).

1 2 3 4
Offered load (Mops)

0
100
200
300
400
500

99
%

La
te
nc
y
(μ
s)

All local
Fastswap
Hermit

40

High Throughput

20%

Memcached with Facebook USR workload.

v Cache 70% of working set in local memory (i.e., 30% in remote memory).

41

High Throughput For Batch Applications

Hermit offers 1.24x higher throughput (up to 1.87x)

0

1

2

3

4

20% 40% 60%N
or

m
al

iz
ed

 S
lo

w
do

w
n

Local Memory Ratio

Fastswap Hermit

Three batch processing applications under varying local memory ratio

v Asynchrony reduces latency and improves throughput
v Feedback loop is critical to the effect of asynchrony
v Design can be generalized to other kernel components such as page migration

for CXL-attached memory

v Hermit offers up to 99.7% lower latency and 1.24x higher throughput without
changing a single line of user code

Low latency, high throughput, and transparency can be achieved simultaneously!

42

Conclusion

https://github.com/uclasystem/hermit

https://github.com/uclasystem/hermit

Q&A

43

Thank You!

