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Datacenter Must Balance Latency With Utilization

Latency-Critical Applications Remote Memory Systems
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Remote Memory Systems

Kernel Swap System

Fast Network 
(e.g., RDMA, CXL)

Remote Memory Pool

Local Memory

Host Server

CPU
80 ns

3 – 8 µs

Network: Mellanox ConnectX-5 Ex (100 GbE, 7 µs for a 4 KB page)
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Kernel Swap Can Incur High Tail Latency

8 – 1992 µs

1914x higher tail latency!

Fast Network 
(e.g., RDMA, CXL)
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Network: Mellanox ConnectX-5 Ex (100 GbE, 7 µs for a 4 KB page)
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Where Does the Latency Come From?
Application

Page Reclamation

Deduplicate Swap-ins

Metadata Bookkeeping

Fetch & Prefetch

User
Kernel

remote access

Remote Memory

Fault
0.2 μs
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Where Does the Latency Come From?
Application

Page Reclamation
(Occasionally)

1180 μs (32 pages)

Deduplicate Swap-ins

Metadata Bookkeeping

Fetch & Prefetch

User
Kernel

remote access

Remote Memory

Network: Mellanox ConnectX-5 Ex (100 GbE)
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Where Does the Latency Come From?
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Deduplicate Swap-ins 2.8 μs

Metadata Bookkeeping

Fetch & Prefetch

User
Kernel

remote access

1180 μs

Remote Memory

Network: Mellanox ConnectX-5 Ex (100 GbE)
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9

Where Does the Latency Come From?
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Remote Memory
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Where Does the Latency Come From?
Application

Page Reclamation

Deduplicate Swap-ins

Metadata Bookkeeping 1.3 μs

Fetch & Prefetch

User
Kernel

remote access

2.8 μs

1180 μs

0.2 μs

Network: Mellanox ConnectX-5 Ex (100 GbE)

9.1 μs
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Where Does the Latency Come From?
Application

Page Reclamation
(Occasionally)

1180 μs

Deduplicate Swap-ins 2.8 μs

Metadata Bookkeeping 1.3 μs

Fetch & Prefetch 0.2 μs

Hardware

User
Kernel

Kernel Swap
(>32%)

Remote Memory 9.1 μs

Network: Mellanox ConnectX-5 Ex (100 GbE)

remote access
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Application

Page Reclamation

Deduplicate Swap-ins

Metadata Bookkeeping

Fetch & Prefetch

User
Kernel

Remote Memory

How To Reduce Latency?



Remote Memory

Lose Transparency

Lose kernel protection & 
isolation
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Kernel Bypassing Is Not a Panacea
Application

Page Reclamation

Deduplicate Swap-ins

Metadata Bookkeeping

Prefetch

User
Kernel

User Managed

Can we eliminate performance bottlenecks in the kernel directly?
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Can Asynchrony Reduce Latency?
Application

Page Reclamation 1180 μs

Deduplicate Swap-ins 2.8 μs

Metadata Bookkeeping 1.3 μs

Fetch & Prefetch 0.2 μs

User
Kernel

Remote Memory 9.1 μs

Network: Mellanox ConnectX-5 Ex (100 GbE)

remote access
No data dependency!
Make it asynchronous!
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Application

Deduplicate Swap-ins

Metadata Bookkeeping

Fetch & Prefetch

User
Kernel

Remote Memory

Naive Asynchrony Is Not Enough

Page Reclamation

Reclaim Thread

• Linux: kswapd

• Fastswap [EuroSys’20]: dedicated core
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Application

Deduplicate Swap-ins

Metadata Bookkeeping

Fetch & Prefetch

User
Kernel

Remote Memory

Naive Asynchrony Is Not Enough

Page Reclamation

Reclaim Thread
Statically ControlledPage Reclamation
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Application

Deduplicate Swap-ins

Metadata Bookkeeping

Fetch & Prefetch

User
Kernel

Remote Memory

Must Have Controlled Asynchrony

v When to start reclamation?
v How many cores for reclamation?

Page Reclamation

Reclaim Thread

Dynamically Controlled
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Challenge #1: When To Start Reclamation

Memory
Usage

CPU

Application

Core 1 Core 2 Core 3 Core 4

When to start reclamation?
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Challenge #1: When To Start Reclamation

CPU

Application

Wasted

Reclaim too early:
• Memory underutilization

Start reclamation

Core 1 Core 2 Core 3 Core 4

Memory
Usage
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Challenge #1: When To Start Reclamation

CPU

Application
Reclaim too early:
• Memory underutilization

Reclaim too late:
• Memory exhaustion

Start reclamation

Core 1 Core 2 Core 3 Core 4

Memory
Usage



21

Challenge #2: How Many Cores For Reclamation

Memory

CPU

Application

Core 1 Core 2 Core 3 Core 4

Taken by reclaim threads

Too few cores:
• Memory exhaustion
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Challenge #2: How Many Cores For Reclamation

Memory

CPU

Application

Core 1 Core 2 Core 3 Core 4

Taken by reclaim threads

Too few cores:
• Memory exhaustion

Too many cores:
• Interfere user threads
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Hermit Design: Feedback-Directed Asynchrony

Application

Deduplicate Swap-ins

Metadata Bookkeeping

Fetch & Prefetch

User
Kernel

Remote Memory
Feedback

Page Reclamation

Reclaim Thread

Page ReclamationPage ReclamationReclaim Scheduler

Reclaim 
Threads
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Hermit’s Adaptive Reclaim Scheduling

Local Memory Usage

# Cores for 
Reclamation

Max # Cores

High-Water 
Mark

Limit
0
1

Low-Water 
Mark
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Hermit’s Adaptive Reclaim Scheduling

Local Memory 
Usage

# Cores for 
Reclamation

Max # Cores

High-Water 
Mark

Limit
0
1

Low-Water 
Mark

v When to start reclamation?
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Hermit’s Adaptive Reclaim Scheduling

Local Memory 
Usage

# Cores for 
Reclamation

Max # Cores

High-Water 
Mark

Limit
0
1

Low-Water 
Mark

v When to start reclamation?
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Hermit’s Adaptive Reclaim Scheduling

v How many cores for reclamation?

Local Memory 
Usage

# Cores for 
Reclamation

Max # Cores

High-Water 
Mark

Limit
0
1

Low-Water 
Mark
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Hermit’s Adaptive Reclaim Scheduling

# Cores for 
Reclamation

Max # Cores

High-Water 
Mark

Limit
0
1

Low-Water 
Mark

Local Memory Usage

Dynamically Adjust
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Hermit’s Adaptive Reclaim Scheduling

# Cores for 
Reclamation

Max # Cores

High-Water 
Mark

Limit
0
1

∝ Swap in throughput

Low-Water 
Mark
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Hermit’s Adaptive Reclaim Scheduling

# Cores for 
Reclamation

Max # Cores

High-Water 
Mark

Limit
0
1

Low-Water 
Mark

When PT remains high

Page Turnaround (PT): how long a swapped-out page remains untouched 
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Hermit Achieves Low Latency

Page ReclamationPage ReclamationReclaim Scheduler

Reclaim 
Threads

Application

Deduplicate Swap-ins

Metadata Bookkeeping

Fetch & Prefetch

User
Kernel

Remote Memory

Overlapped with 
I/O
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How To Improve Throughput?

Application

Deduplicate Swap-ins

Metadata Bookkeeping

Fetch & Prefetch

User
Kernel

Remote Memory

Latency-critical path Non-critical path

Page Reclamation

Reclaim Thread

Reclaim Scheduler
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Aggressive Batching For Async. Reclamation

Non-critical path

Page Reclamation

Reclaim Thread

Reclaim Scheduler

Batched operations for a group of pages:
• TLB Shootdown
• Page I/O Write
• cgroup Accounting
• etc.

2.9x more CPU efficient



Ø How does Hermit maintain low end-to-end tail latency?
Ø How does Hermit improve application throughput?

Evaluated 6 real-world cloud applications with varying local memory ratios 
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Evaluation

o Latency-Critical: Memcached, SocialNet, Gdnsd
o Batch-Processing: Spark, XGBoost, Cassandra

State of the art: Fastswap [EuroSys’20]
o Offload page reclamation to a single dedicated core
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Low Tail Latency
Memcached with Facebook USR workload. 
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Low Tail Latency
Memcached with Facebook USR workload. 
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Low Tail Latency

4x throughput drop!

State(state of the art)

Memcached with Facebook USR workload. 

v Cache 70% of working set in local memory (i.e., 30% in remote memory).
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Low Tail Latency

99.7% lower

Memcached with Facebook USR workload. 

v Cache 70% of working set in local memory (i.e., 30% in remote memory).
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High Throughput

3.2x higher

Memcached with Facebook USR workload. 

v Cache 70% of working set in local memory (i.e., 30% in remote memory).
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High Throughput

20%

Memcached with Facebook USR workload. 

v Cache 70% of working set in local memory (i.e., 30% in remote memory).
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High Throughput For Batch Applications

Hermit offers 1.24x higher throughput (up to 1.87x)
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Three batch processing applications under varying local memory ratio



v Asynchrony reduces latency and improves throughput
v Feedback loop is critical to the effect of asynchrony
v Design can be generalized to other kernel components such as page migration 

for CXL-attached memory

v Hermit offers up to 99.7% lower latency and 1.24x higher throughput without 
changing a single line of user code

Low latency, high throughput, and transparency can be achieved simultaneously!
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Conclusion

https://github.com/uclasystem/hermit

https://github.com/uclasystem/hermit


Q&A
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Thank You!


