
Hermit: Low-Latency, High-Throughput, and Transparent Remote Memory via
Feedback-Directed Asynchrony

Yifan Qiao†∗ Chenxi Wang†⋄ Zhenyuan Ruan‡ Adam Belay‡ Qingda Lu♯

Yiying Zhang§ Miryung Kim† Guoqing Harry Xu†⋄

†UCLA ‡MIT CSAIL ♯Alibaba Group §UCSD

Abstract
Remote memory techniques are gaining traction in datacen-
ters because they can significantly improve memory utiliza-
tion. A popular approach is to use kernel-level, page-based
memory swapping to deliver remote memory as it is transpar-
ent, enabling existing applications to benefit without modifi-
cations. Unfortunately, current implementations suffer from
high software overheads, resulting in significantly worse tail
latency and throughput relative to local memory.

Hermit is a redesigned swap system that overcomes
this limitation through a novel technique called adaptive,
feedback-directed asynchrony. It takes non-urgent but time-
consuming operations (e.g., swap-out, cgroup charge, I/O
deduplication, etc.) off the fault-handling path and executes
them asynchronously. Different from prior work such as
Fastswap, Hermit collects runtime feedback and uses it to
direct how asynchrony should be performed—i.e., whether
asynchronous operations should be enabled, the level of
asynchrony, and how asynchronous operations should be
scheduled. We implemented Hermit in Linux 5.14. An eval-
uation with a set of latency-critical applications shows that
Hermit delivers low-latency remote memory. For example, it
reduces the 99th percentile latency of Memcached by 99.7%
from 36 ms to 91 µs. Running Hermit over batch applica-
tions improves their overall throughput by 1.24× on average.
These results are achieved without changing a single line of
user code.

1 Introduction
Techniques enabling datacenter applications to use remote
memory [10, 17, 28, 29, 36, 43, 52, 53, 57] have gained trac-
tion due to their potential to break servers’ memory capacity
wall, thereby significantly improving datacenters’ resource
utilization. Compared to clean-slate techniques [17, 52] that
provide new primitives for developers to efficiently manage
remote memory, swap-based techniques [3, 10, 29, 53, 57,
58] that piggyback on existing paging/swap mechanisms in
the OS kernel are more practical as they offer transparency,
allowing legacy code to run as is on a far-memory system.

The main drawback of swap-based remote access is the
overhead incurred by the kernel’s paging system. For ex-

∗Part of the work was done when Yifan Qiao interned at Alibaba Group.
⋄Corresponding authors.

ample, when running Memcached using Fastswap [10], the
current state-of-the-art swapping system for Linux, a remote
access takes an average of 14 µs, of which only 9 µs are spent
on network (RDMA) operations—the software-induced over-
head is above 50%! This large fault-handling overhead sig-
nificantly increases operation latency, precluding the use of
remote memory with latency-critical applications.

In addition, long remote-access time can further block sub-
sequent instructions dependent on these accesses, leading to
substantial reductions in application throughput. For exam-
ple, the performance of garbage collection in a managed lan-
guage runtime is highly sensitive to memory access latency
due to its pointer-chasing nature. Reductions in GC perfor-
mance can lead to delayed object creations, dramatically re-
ducing the application’s overall throughput [42, 57, 58].

The underlying reason for such high overhead is a mis-
match in the design of today’s swap-based paging systems,
which originally targeted slow, disk-based storage, and mod-
ern datacenter networks (e.g., 100-400 GbE) that can deliver
pages much faster. For example, through profiling, we reveal
the following performance bottlenecks that persist in Linux
(§3):

• Page reclamation blocks the critical path: To make
room to fault in new pages, the OS must reclaim memory
by swapping out cold pages. Linux is designed to handle
this asynchronously by swapping out pages in a separate
thread. However, when Linux fails to keep up with the
demand for new pages, the page fault handler must block
and wait for reclamation to finish.

• Duplication checks are too conservative: Linux is de-
signed to never make duplicate I/O requests for the same
page. Although this occasionally prevents wasted band-
width, it comes at a high cost in terms of synchronization
overhead, such as during swap cache lookup and insertion.

• Opportunities for batching are not exploited: Batching
can be an effective optimization when it does not harm
page fault handling latency. For example, when Linux
performs page reclamation, it first selects a set of victim
pages and then swaps out each page individually. A bet-
ter strategy would be to process victim pages in batches,
reducing the cost of TLB shootdowns, I/O writes, and
cgroup accounting.

State of the Art. The conventional wisdom is that soft-
ware overheads can be overcome by bypassing the ker-

nel [48, 52, 63]. This approach typically requires application-
level modifications or the use of custom APIs, making it im-
practical to deploy transparently across all applications. Our
aim is to answer the following question instead: Can we elim-
inate performance bottlenecks in the kernel directly, allow-
ing the benefits of fast remote memory to be exposed to all
applications transparently?

Recent work, such as Fastswap [10] and InfiniSwap [29],
has made some progress in optimizing the kernel’s swap
subsystem, such as the use of RDMA to deliver remote
pages more efficiently. Fastswap, the current state-of-the-art,
also modifies the Linux Kernel to offload page reclamation
to a dedicated core and executes it asynchronously. This
increases swap-out efficiency, and reduces the time that a
page fault handler must block waiting for reclamation to fin-
ish. However, Fastswap leaves other opportunities for asyn-
chrony on the table. In addition, a single, dedicated core
is insufficient to accommodate changes in demand for swap-
out throughput under time-varying memory pressure, limit-
ing the conditions where Fastswap can perform well (§3).
Insights. This work builds on three insights, all centering
around asynchrony. First, asynchrony can be used to reduce
the latency of page fault handling. For example, during a
page fault, the kernel first looks for the page in the swap
cache. If the page is present, it will be mapped at the fault-
ing address and the kernel does not need to issue a fetch.
However, this check is protected by a lock, which incurs a
non-trivial overhead. Instead, fetching a page via RDMA,
even if the page is already in the swap cache, is extremely
fast: its only penalty is slightly wasted network bandwidth
(i.e., bandwidth is rarely saturated). By always issuing the
fetch asynchronously and overlapping it with the check, we
can reduce the fault-handling latency.

Second, only page faults handlings are latency critical, so
it is safe to aggressively optimize all other operations for
throughput via batching. For instance, when TLB shoot-
downs are batched, it reduces the number of interrupts that
have to be sent across cores. As another example, RDMA
writes of multiple swapped-out dirty pages can be batched
into a single transfer. These opportunities are only possible
because such operations are conducted asynchronously; oth-
erwise, batching would delay critical swap-in operations.

Third, to achieve optimal performance, the use of asyn-
chrony (e.g., number of cores) must be adjusted dynami-
cally. For example, it is critical that swap-out throughput
is perfectly balanced with swap-in throughput. If swap-out
throughput is too low, the page fault handler will block and
delay the application. If it is too high, it will leave a substan-
tial portion of local memory underutilized, impacting appli-
cation performance. This is especially challenging because
the swapping rate depends on the workload, its inputs, and
even the different phases within its execution.
Hermit. This paper presents Hermit, a new paging/swap
system that exploits these (previously-unknown) opportuni-

ties for asynchrony. Hermit employs feedback-directed asyn-
chrony as the major principle in the paging system design,
simultaneously enabling full code transparency (i.e., any
legacy code can run as is), low remote access latency, and
high application throughput. Hermit employs different types
of asynchrony to tackle the three bottlenecks (i.e., blocked
swap-ins, conservative checks, lack of batching), as elabo-
rated below:

First, page reclamation is moved into a set of reclaim
threads, which eagerly evict (least-recently used) pages and
aggressively batch expensive operations involved in each
swap-out (§4.2). In particular, Hermit batches page unmap-
ping, TLB shootdown, RDMA writes, polling, and cgroup

uncharging in swap-out threads, reducing the amounts of
computation involved in swap-outs and improving their
throughput (§4.4).

Second, Hermit opportunistically bypasses the swap-in
duplication check and issues I/O read requests eagerly, de-
laying such checks to the synchronous PTE update stage.
Since only one thread can successfully update the PTE, all
other competing threads will eventually release their dupli-
cate pages, guaranteeing safety (§4.3).

Third, inspired by optimistic locking [4], Hermit makes
page I/O fully asynchronous during swap-in to further re-
duce latency. We split the swap-in procedure into two com-
ponents: one that can still successfully run and is reversible
even if there are concurrent updates, and a second that may
either abort or create irreversible side effects in the presence
of concurrent updates. Hermit moves the first component out
of the critical section to overlap it with the page I/O (details
are in Figure 4). Hermit checks the validity before the crit-
ical section finishes (i.e., whether concurrent updates have
occurred) and if they have, reverts the speculatively executed
operations.

Finally, we create a feedback control system for each type
of asynchronous operation, using execution profiles to adjust
whether and how asynchrony should be applied. In particu-
lar, we use (1) page turnaround (i.e., time between a page’s
swap-in and previous swap-out), (2) page-in/-reclamation
throughput, and (3) conflict rates (i.e., how often concur-
rent updates occur), as metrics to adjust our asynchrony in
dealing with reclamation timing, reclamation intensity, ea-
ger swap-in, conservative checks, respectively. Hermit pro-
files and collects these signals throughout the execution to
dynamically adapt to the application’s changing behaviors.
Results. Hermit was implemented in Linux 5.14 (released
August 2021). We have carefully inspected all relevant ker-
nel patches made since then and confirmed that none of them
are directly related to Hermit.

We evaluated Hermit with a set of real-world applications
including both latency critical (Memcached, SocialNet, and
Gdnsd) and batch processing applications (Apache Spark,
XGBoost, and Apache Cassandra). Our evaluation on Mem-
cached demonstrates that Hermit outperforms Fastswap [10]

I/O Read

Issue
Prefetch Req. Update

MetadataB
eg

in Lookup
Swap Cache

Hit

Miss Page
Reclamation

Set
PTE

Wait Page
Conflict

En
d

Fastswap offloads reclamation to a dedicated core
Only write back dirty pages

Stage ①: 0.6 μs Stage ②: 2.8 μs Stage ③: 0.4 μs Stage ⑤: 9.1 μs Stage ⑥: 0.9 μsStage ④: 1180 μs

Otherwise

Enough free memory

Unmap
PTE

TLB
Shootdown

I/O
Write

Release Page
& Swap Cache

cgroup
UnchargeB

eg
in

En
d

Deduplicate
Swap-ins

cgroup
Accounting

0.2 μs

Until enough free memory

Figure 1: The life cycle of a remote memory page fault in Linux swap.

by 99.7% in latency, reducing the 99th percentile latency
from 36 ms to 91 µs. For batch processing applications, Her-
mit improves throughput by up to 1.87× with a geometric
mean of 1.24×. Hermit also scales much better with the num-
ber of cores than Fastswap. These results demonstrate that
low tail latency and high throughput can be achieved at the
same time without bypassing kernel, making Hermit a practi-
cal solution for enabling remote memory. Hermit is available
at https://github.com/uclasystem/hermit.

2 Background

Today’s datacenter applications expose high load variability
and diurnal patterns [13, 14, 47]. Despite low average load,
operators have to provision resources for peak demand to
avoid violating service-level agreements. Memory is an es-
pecially challenging resource because it is uncompressable,
meaning that running out of it causes tasks to be killed,
which can be very disruptive to overall performance [56].
This is a major contributing factor to low memory utilization
in today’s datacenters [41, 56].

Remote memory offers a promising solution to improving
memory utilization. Its key idea is to break the hardware
boundary and unstrand the idle memory of remote machines
through fast datacenter networking. Existing systems have
demonstrated the feasibility of utilizing remote memory with
good performance [10, 17, 52]. Among different approaches
to realizing remote memory, the kernel-based approach of-
fers a unique advantage of transparency. It enables existing
applications to run as is over remote memory using commod-
ity hardware. This is very attractive to datacenter operators
as it significantly lowers the bar for adoption.

The kernel-based approach achieves transparency through
paging, an idea that dates back to the 1960s. Originally, pag-
ing was designed to extend the addressable memory space
with a slow but large secondary storage (usually a mechani-
cal disk). Under memory pressure, the kernel pages out cold
pages to disk and marks them as absent from memory. Later,
if a process accesses any of those pages, the memory manage-
ment unit (MMU) raises a page fault exception which trans-
parently traps the control flow into the kernel to page in the
data and update the corresponding page table entry (PTE).

Linux implements paging in its swap subsystem, which is
often used as the last resort for preventing out-of-memory
(OOM) killing. Swap can serve as a temporary mechanism
that buys operators time to solve memory pressure, e.g., by
migrating or killing processes. The architecture of the pag-
ing/swap subsystem has remained relatively stable since its
inception. However, in the context of remote memory, fast
network-attached memory (4 µs, 12 GB/s) can be used as a
secondary storage device as opposed to a slower disk (10 ms,
200 MB/s). Due to this huge performance gap, the legacy
swap system is a bottleneck in accessing remote memory.
For example, when running Memcached on Fastswap (i.e.,
the state-of-the-art swap system) with a high local memory
ratio (70%), we see a 4× throughput drop.

3 Understanding Existing Swap Systems

3.1 The Life Cycle of Remote Memory Access

The legacy design of Linux swap imposes high overheads
on accessing remote memory. To better understand the root
cause of its inefficiencies, we conducted a performance study
by running Memcached on Fastswap [10] (the state-of-the-
art swap system). Figure 1 shows the stages of a remote
memory access and breaks down their costs. We discuss each
stage in more detail as follows:

1⃝ Lookup swap cache. The swap cache serves as a cen-
tralized component that prevents race conditions. It tracks
the information of swapped-in pages and ongoing swap-out
requests. First, the faulting page may have been fetched by
another process or the OS prefetcher. By looking up the swap
cache, Linux detects this and jumps to stage 6⃝. Second, it
is possible that the faulting page is being swapped out by an-
other process. In this case, naïvely fetching the remote page
will see the stale copy. With the swap cache, Linux detects
the race and cancels the ongoing swap-out. Looking up the
swap cache takes an average of 0.6 µs.

2⃝ Deduplicate swap-ins. At the same time, there can be
multiple threads swapping in the same page. Linux guaran-
tees that only one thread can succeed by synchronizing with
lock primitives. The remaining threads will be busy waiting
until the page gets fetched. This design saves I/O bandwidth

https://github.com/uclasystem/hermit

but impacts latency and hurts scalability. This stage takes an
average of 2.8 µs.
3⃝ cgroup accounting. Before fetching the page, Linux

must ensure that the current process has sufficient free mem-
ory by performing cgroup accounting. For the lucky pro-
cess with enough memory, it jumps to stage 5⃝ directly. The
accounting stage takes an average of 0.4 µs. Otherwise,
Linux must go through stage 4⃝ to reclaim pages to make
room, as elaborated below.
4⃝ Direct page reclamation. Linux iteratively reclaims

pages until the size of the available local memory is above
the low-water mark. Linux swaps out a single page for each
iteration. Swap-out is expensive as it involves operations
such as TLB shootdown, PTE unmapping, etc. This stage
exists only when the local memory runs low, but it is also
the longest one that takes an average of 1180 µs. To re-
duce direct reclamation, Fastswap performs this stage asyn-
chronously with a dedicated core.
5⃝ Fetch and prefetch page. Linux issues an I/O request

to fetch the faulted page. Meanwhile, it may issue multiple
prefetching requests. This stage takes an average of 9.1 µs.
6⃝ Update metadata. Finally, Linux updates kernel meta-

data, including page table entries (PTEs), swap entries, and
page reverse mapping (rmap). This stage takes 0.9 µs.

3.2 Root Causes of Inefficiencies

1 2 3 4
Offered load (Mops)

0
200
400
600
800

1000

99
%

La
te

nc
y

(μ
s) Fastswap

Fastswap∗
-2 cores
Fastswap∗
-4 cores
Fastswap∗
-8 cores
All local

Figure 2: 99th percentile latency with respect to offered load of
Memcached on Fastswap under 70% local memory.

To understand the bottleneck imposed by Fastswap’s sin-
gle, dedicated reclamation core, we ran several experiments
with Memcached. Figure 2 shows Memcached’s 99th per-
centile latency with respect to its offered load when running
with 70% local memory. The baseline for comparison is
Memcached running locally (100% local memory without
swapping), which is the rightmost curve and achieves >4.4
Mops load throughput with good tail latency. Memcached on
Fastswap (the blue curve), however, can only offer ≈1 Mops
load before the dedicated core gets saturated and its latency
increases dramatically. The reason is that Fastswap’s single
dedicated core cannot keep up with the increasing demand
for page reclamation. We then modified Fastswap’s origi-
nal implementation to offload page reclamation onto multi-
ple cores, denoted as Fastswap∗ in the figure, as a naïve
strawman approach.

Using more dedicated cores can indeed help reduce the
direct reclamation ratio, as shown in Figure 3. With 4 ded-
icated cores, Fastswap∗ is able to eliminate direct page

1 2
Offered load (Mops)

0

25

50

75

D
ire

ct
Re

cl
ai

m
R

at
io

(%
) Fastswap

Fastswap∗
-2 cores
Fastswap∗
-4 cores

Figure 3: Direct page reclamation ratio of Memcached on Fastswap
under 70% local memory.

reclamation, thus providing the highest throughput among
all Fastswap variants. However, Fastswap uses static core
provisioning, which is insufficient in practice due to the
phased behaviors and shifts in load that occur within dat-
acenter applications. First, the number of required dedi-
cated cores depends on the application’s working set, the
available local memory, and the swap-in intensity, making
it impossible for a statically determined number to work uni-
versally for different applications or even different phases
of the same application. Second, over-provisioning dedi-
cated cores does not always lead to greater end-to-end per-
formance; in many cases, using more cores only shifts the
bottleneck from page reclamation to the application itself,
as more dedicated cores for reclamation imply fewer avail-
able cores for application threads. As shown in Figure 2,
increasing the number of dedicated cores in Fastswap from 1
to 4 (Fastswap∗-4 cores) improves performance, but fur-
ther allocating cores degrades performance (Fastswap∗-8

cores). Furthermore, although Fastswap∗-4 cores elim-
inates direct page reclamation (i.e., reducing latency), it still
loses ∼45% performance (i.e., reducing throughput). The
performance loss is due to three major kinds of inefficiencies
induced by Linux swap, as elaborated below.
Swap-out blocks swap-in. As explained earlier, Mem-
cached experiences high memory access latency when run-
ning short of local memory, as it has to reclaim pages. Page
reclamation is expensive as it requires finding victim pages
and unmapping them, followed by a number of expensive
operations for consistency such as TLB shootdown. This sig-
nificantly impacts its tail latency, leading to violations of the
service-level agreement (SLA).

Fastswap tackles this issue by allocating a dedicated core
to reclaim pages asynchronously in the background. How-
ever, as discussed earlier, it is nearly impossible to statically
identify the optimal number of cores due to load variability.
Unoptimized for fast I/O. Linux swap was designed for
slow secondary storage like hard-disk drives whose perfor-
mance is two to three orders of magnitude lower than to-
day’s remote memory in both bandwidth and latency. Since
disk bandwidth is often the bottleneck, Linux applies aggres-
sive optimizations in its page fault handling path to reduce
I/O traffic (stage 2⃝). While they were effective in the era
of slow disks, these optimizations become irrelevant in the
context of remote memory whose bandwidth is close to the
bandwidth of main memory. Even worse, the outdated op-

timization generates an adversarial performance impact; it
prolongs remote memory access latency, hurting scalability
(e.g., due to synchronization). For latency-critical applica-
tions like Memcached, prolonged remote memory accesses
can significantly increase the time for serving incoming re-
quests, imposing super-linear effects on tail latency. Mod-
eled by queueing theory [24], for instance, 10% longer ser-
vice time can potentially double the 99th percentile latency,
leading to vast SLA violations.

Additionally, since the disk latency (ms-scale) is signifi-
cantly higher than the CPU time in page fault handling (µs-
scale), Linux adopts a serial-execution model for simplicity.
As shown in Figure 1, the I/O read stage is executed sepa-
rately from other stages; after issuing the I/O read request,
Linux either busy waits for the I/O response or re-schedules
the faulting thread (which hurts latency of fast I/O requests),
relinquishing the opportunity of overlapping the waiting pe-
riod with other stages.

Unoptimized for CPU overhead. Linux swap is a mech-
anism aimed at avoiding OOM killing. Inherently, treating
swapping as a rare event, it was designed to optimize for
responsiveness, not for CPU efficiency. For example, dur-
ing page reclamation (stage 4⃝), Linux swaps out only one
page at a time, under the assumption that by releasing the
space more timely it can unblock the OOM process sooner.
Unfortunately, this amplifies the CPU usage as it must in-
voke expensive operations such as TLB shootdown for every
reclaimed page. While overhead is acceptable when swap-
ping is rare, it grows significantly in the scenario of remote
memory (which is swapping-intensive). In the case of Mem-
cached, 12.6% of the total CPU time is spent on reclaim-
ing pages, not on application tasks. To make matters worse,
Linux swap heavily relies on locks to synchronize page recla-
mation and scales poorly. Hence, the overhead will further
increase with the number of concurrent swapping operations.

Key takeaway. Linux swap imposes high overheads to re-
mote memory access primarily due to the above three issues.
Fastswap, the state-of-the-art swap system, partially tackles
the first issue, but neglects the last two. For the first issue,
Fastswap uses statically provisioned cores to run swap-out
tasks; as shown in Figure 2, static core provisioning cannot
adapt to dynamic load changes, leading to either insufficient
or wasted CPU resources.

4 Hermit Design

4.1 Design Overview

To overcome the aforementioned inefficiencies, we devel-
oped Hermit, a new swap system based on the principle of
feedback-directed asynchrony. Our key insight is that asyn-
chrony should be used aggressively (to overlap nonurgent
and urgent operations to reduce latency), but this must be
done in a controlled manner—whenever asynchrony cannot

bring benefits, we should switch back to the conventional
synchronous design. Figure 4 illustrates Hermit’s design.

First, Hermit optimizes tail latency of accessing remote
memory by moving page reclamation from the critical path
into the background (§4.2). Instead of following the design
of Fastswap, which statically reserves a certain number of
dedicated cores, Hermit relies on a reclaim scheduler to dy-
namically schedule reclaim threads. The scheduler leverages
feedback from cgroup counters to determine the right tim-
ing and the appropriate number of cores for reclamation.

Second, the swap-in path of Hermit was designed with
fast remote memory in mind (§4.3)—for remote memory,
it is reasonable to trade off network usage for end-to-end
performance as modern datacenter network offers abundant
bandwidth (100-400 Gbps). In the common case, Hermit de-
tects idle network bandwidth and opportunistically bypasses
swap-in duplication checks (stage 2⃝ in §3) to improve scala-
bility and reduce latency. This bypassing has a consequence:
in the (rare) case that multiple threads are fetching the same
page at the same time, they will all transfer the same page
over the network. Note that this will not lead to correctness
issues because only one copy will be mapped by the PTE in
the last stage, and any other requests will abort and release
their page. However, it may potentially waste some network
bandwidth when duplicate pages are requested. Therefore,
instead of bypassing blindly, we use the conflict rate (in the
last stage) as a control signal to determine whether it is ben-
eficial to enable bypassing. To further optimize the critical-
path latency, Hermit also overlaps the I/O read stage with
other swap-in operations (e.g., cgroup accounting, meta-
data updating, etc.).

Finally, we structured Hermit to operate in a swap-
intensive environment to match the reality of using remote
memory (§4.4). Hermit carefully optimizes the CPU usage
of page reclamation so that more CPU resources are avail-
able for applications. Enabled by Hermit’s reclaim scheduler,
which reduces the “urgency” of reclamation tasks, Hermit
opportunistically handles reclamation requests in batches to
amortize the overhead. In addition, Hermit bypasses the ex-
pensive reverse mapping operation when swapping out a pri-
vate page (which is common). As a result, Hermit not only
reduces the remote access latency but also significantly im-
proves the application’s throughput.

4.2 Reclaim Scheduling

In Linux swap, the direct page reclamation in the swap-in
path significantly impacts the tail latency of accessing the
remote memory. To reduce tail latency, Hermit moves recla-
mation off the critical path into background threads; the re-
claim scheduler monitors the free memory size and proac-
tively starts reclamation before memory exhaustion. The
scheduler uses the application’s swap throughput as a feed-
back signal to auto-tune the number of reclaim threads.

I/O Read

Miss

Reclaim
Scheduler

Issue
Prefetch Req.

cgroup
Accounting

Update
Metadata

Use the reclaim scheduler for asynchronous reclamation
Skip these steps unless Hermit detects a high conflict rate

End

Check &
Set PTE

Rollback

Conflict

Success

Deduplicate
Swap-ins

Wait Page

Begin

Lookup
Swap Cache

Hit Conflict

Stage ①: 0.6 μs Stage ②: 9.1 μs

0.4 μs 0.2 μs 0.4 μs

Stage ③: 0.5 μs

Figure 4: The life cycle of a remote memory page fault in Hermit.

Designing such a scheduler is challenging because it must
determine both the right timing and the appropriate amount
of CPU resources for reclamation. (1) As for the timing, if
the scheduler starts reclamation too early, a substantial por-
tion of local memory would be underutilized, impacting ap-
plication performance; on the flip side, if the scheduler starts
reclamation too late, the application would exhaust the local
memory and suffer from direct reclamation. (2) As for CPU
resources, under-provisioning cores for reclamation (i.e., the
case of Fastswap) make it unable to keep up with the local
memory consumption rate, leading to memory exhaustion,
while over-provisioning cores is also undesired as it contends
with the application and reduces its performance.

Dynamically
adjusted

Local Memory Usage

C

or
es

 fo
r

R
ec

la
m

at
io

n Max # Cores

High-Water
Mark

Limit0
1

Low-Water
Mark

Figure 5: Adaptive reclaim scheduler.

Figure 4 shows the design of the reclaim scheduler, which
leverages counters from cgroup to schedule reclamation.
Since the timing for reclamation is critical to performance,
our reclaim scheduler has to be very reactive to free memory
size changes (in µs-level). Instead of using a dedicated core
to poll the memory usage which waste CPU cycles, Hermit
adopts a decentralized reclaim scheduler; it inlines the sched-
uler code into the cgroup charging, an indispensable step
for swap-ins. This design enables us to discover any sudden
change in the free memory size with only a few CPU cycles.

Hermit’s scheduling policy follows the conventional wis-
dom of random early detection [26] to gradually increase its
asynchronous reclaim throughput. Specifically, Hermit starts
asynchronous reclamation when application’s memory bud-
get is running low, but Hermit will only enable a small num-
ber of reclaim threads first and gradually increase the num-
ber of reclaim threads after observing constantly increasing
memory usage. The intention of the design is to handle a
burst of swap-ins within the memory limit with as few re-

claim threads as possible, and thus minimizing asynchronous
reclamation’s interference to the application.

On the other hand, when the application is about to run
out of memory, Hermit must unleash the full power of asyn-
chronous reclaim threads to match the reclaim throughput
to swap-in throughput to avoid direct reclamation, offering
the application maximum swap performance. Figure 5 de-
picts Hermit’s adaptive scheduling policy, which determines
the number of cores for page reclamation given the applica-
tion’s current local memory usage. The curve can be divided
into three phases, marked by the low-water mark and the
high-water mark to differentiate the urgency of asynchronous
reclamation.

When the application does not swap intensively and its lo-
cal memory usage is below the low-water mark, the number
of reclamation cores is zero, indicating that the asynchronous
page reclamation is disabled now to let application threads
have all CPU cores. When the application’s local memory
usage is between the low-water mark and the high-water
mark, it indicates that the application is under memory pres-
sure, and the scheduler will assign one core for asynchronous
reclamation to relieve the memory pressure with minimal
compute to minimize its interference to application’s threads.

Finally, when the application hits the high-water mark, it
indicates that the application is about to run out of memory.
Page reclamation is an urgent task now to prevent the appli-
cation from triggering direct page reclamation. As such, the
reclaim scheduler must assign more cores for reclamation
to match the reclaim throughput with application’s swap-in
throughput. As Figure 5 shows, during this phase, the num-
ber of cores assigned for reclamation is proportional to the
local memory usage, reaching the maximum value when the
local memory usage equals the memory limit.

Hermit leverages the kernel’s runtime statistics to auto-
tune the low and high memory watermarks, as elaborated
below.
High memory watermark. Hermit dynamically adjusts
the high memory watermark based on the application’s cur-
rent swap intensity. We define swap intensity as the overall
swap-in throughput divided by the per-core page reclama-
tion throughput, representing the number of cores needed
for reclamation to match the swap-in speed. Intuitively,
when the swap intensity increases, we should lower the high-
water mark to start ramping up reclamation earlier; and
when the swap intensity decreases, we should raise the high-
water mark accordingly. Hermit sets the high-water mark as
MEM _LIMIT − α · SWAP_INTENSITY , where α = 128

works well in practice.
Low memory watermark. Initially, Hermit sets the low-
water mark to be the same as the high-water mark. Then
it gradually probes its optimal value based on the average
page turnaround time (APT), defined as the average dura-
tion for swapped-out pages to remain untouched. When
APT does not increase, Hermit attempts to lower the low-

water mark, as now it can potentially start reclamation ear-
lier without impacting the application performance. How-
ever, when APT increases, Hermit immediately raises back
the low-water mark to revert the negative impact on the ap-
plication performance.

4.3 Adapt Swap-in to Fast Remote Memory

As shown in Figure 4, Hermit re-architects the swap-in path
for the fast remote memory with two main innovations.
Eager swap-in. Hermit opportunistically bypasses the
swap-in duplication check to minimize latency. As such, it is
now possible that multiple threads issue swap-in requests for
the same page. To ensure that only one of them will succeed,
Hermit synchronizes them in the final stage (updating PTE)
using a fine-grained lock. All other failed threads will release
their swapped-in pages—CPU cycles consumed by them are
wasted and considered as penalty. Hermit collects the con-
flict rate and the penalty as feedback to reassess whether it
is still beneficial to enable eager swap-in and disable it if it
impacts performance.
Asynchronous I/O. Hermit further shortens the critical
path of swap-ins by overlapping the I/O read with other op-
erations, for example, cgroup charging. If later the cgroup
check shows no memory, Hermit discards the I/O read re-
sponse and updates the failure counter. Hermit falls back
into synchronous I/O when the failure ratio is high. This hap-
pens very rarely in practice thanks to Hermit’s asynchronous
reclamation (§4.2).

4.4 CPU-Efficient Page Reclamation

Unmap
PTE

Unmap
PTE …

Batched I/O Write

Release Page
& Swap Cache

Release Page
& Swap Cache…

Batched
cgroup
Uncharge

Batched
TLB

Shootdown

Begin End

Eliminate reverse mapping overhead for private pages
Batch operations to save compute
Only write back dirty pages

Figure 6: Hermit’s asynchronous page reclamation path.

As shown in Figure 6, Hermit carefully optimizes the CPU
overheads of page reclamation to minimize its performance
impact to applications.
Batched reclamation. As illustrated in §3, Linux’s page
reclamation is mainly designed for slow disk devices where
swapping occurs infrequently—it trades off CPU efficiency
for responsiveness by only swapping out one page at a time.
However, Hermit overcomes the responsiveness loss with its
asynchronous reclamation design, which relaxes the respon-
siveness requirement of page reclamation, thereby creating
opportunities for batching. As depicted in Figure 6, Hermit
batches expensive operations, including TLB shootdowns,
I/O writes, and cgroup accountings—to amortize their over-
heads in the asynchronous page reclamation path.

Reverse mapping elimination. To avoid race conditions
during reclamation, Linux has to ensure that the page is im-
mutable before writing it back to remote memory. Linux
achieves this goal by using rmap (reverse page mapping) to
identify and unmap all the virtual pages mapped to the re-
claimed physical page. rmap walk is expensive as it involves
several memory accesses and lock synchronizations. A key
observation in Hermit is that most reclaimed pages are pri-
vate pages (i.e., only referenced by one virtual page). For
private pages, Hermit eliminates the expensive rmap walk by
inlining the virtual page address into the physical page meta-
data in Linux. This approach trades a tiny portion of local
memory (0.2% in the worst case) for better performance.

5 Implementation
We implemented Hermit atop Linux 5.14, the latest release
when we started the project. We have been carefully exam-
ining every new release to ensure that no patch is directly
related to our techniques. We added or modified 9704 lines
of kernel code, mainly re-implementing Linux’s swap-in and
swap-out code paths.

We built our RDMA-based swap backend atop Fastswap’s
implementation. The original Fastswap uses Linux’s
frontswap interface which only supports blocking I/O. We
extended it with an asynchronous I/O interface to enable
asynchronous batched I/O writes during page reclamation.

For the swap-in path, we stored the feedback signals
swap_stats, used by Hermit to decide whether to by-
pass the swap-in deduplication, in Linux’s process context
mm_struct. swap_stats contains two atomic counters
representing the numbers of successful and aborted swap-
ins respectively. The page fault handler reads and updates
swap_stats when swapping in the page.

For the swap-out path, we implemented per-cgroup re-
claim threads as Linux kernel threads. We stored the feed-
back signals swap_ctrl, used by Hermit to decide the
swap-out timing, in Linux’s memory cgroup mem_cgroup.
swap_ctrl contains two counters representing the total
number of charged pages and reclaimed pages. Hermit up-
dates swap_ctrl during cgroup charging and page recla-
mation. The reclaim scheduler reads swap_ctrl periodi-
cally (per 128 charges in our implementation) to calculate
the swap intensity for updating the high-water mark. We
use Linux’s existing mechanism of tracking the page re-fault
distance to calculate the average page turnaround (APT) for
updating the low-water mark. Hermit batches 32 pages per
NUMA node for its asynchronous page reclamation to keep
low amortized overheads while ensuring most reclamations
can finish timely (within 1 ms). To batch reclamation while
ensuring consistency, we carefully ordered the operations
(see Figure 6). Hermit first selects and unmaps a batch of
pages, and then issues a single TLB flush before writing all
dirty pages to remote memory. After which, Hermit rechecks
each page to ensure it remains untouched and free it. Other-

wise, the page must have been faulted on and re-mapped into
the process’ page table, so Hermit skips freeing this page
and returns it back to the application. To bypass the rmap

walk, we stored the virtual address of private pages using a
global array. We did not directly embed the virtual address
into Linux’s per-page metadata to avoid breaking its cache
alignment.

6 Evaluation
Our evaluation seeks to answer the following questions:

1. Can Hermit maintain low tail latency (§6.2) and high
throughput (§6.3) while delivering remote memory?

2. How does Hermit’s performance compare to standard
Linux and Fastswap [10]? (§6.2-§6.3)

3. What contributes to Hermit’s better performance?
(§6.4)

Setup. We ran experiments in a cluster with one CPU
server and one memory server, connected by a 100 GbE net-
work. Each server equips a 24-core AMD 7402P CPU and
128 GB memory. Both Hermit and Fastswap ran on Ubuntu
20.04 with Linux 5.14. For latency-critical applications, we
generated load from another server, which connects to the
CPU server via a 25 GbE network. We followed common
practices to tune these servers for low latency [47], including
disabling CPU frequency scaling, machine-check exceptions,
and transparent hugepages. We also disabled OS security
mitigations as recent CPUs have fixed these vulnerabilities.
We enabled hyperthreading as it improves the performance
of remote memory systems.
Methodology. We compared Hermit with the ideal system
that only uses local memory and the state-of-the-art kernel-
based remote memory system, Fastswap [10]. To enable a
fair comparison, we also ported Fastswap to Linux 5.14, the
same kernel version that Hermit uses.

6.1 Real-world Applications

We used six real-world datacenter applications for evaluation,
as shown in Table 1.

Category Application Dataset Size

Memcached [7] Facebook’s USR [14] like 32M KVs
Latency- SocialNet [27] Socfb-Penn94 [51] 41.5K nodes,
Critical 1.4M edges

Gdnsd [1] Custom 75M sites

Batch
Spark [62] Wikipedia EN [8] 188M points

XGBoost [21] HIGGS [15] 21M instances
Cassandra [9] YCSB [22] 20M records

Table 1: Applications used in the evaluation.

Latency-critical applications. Memcached [7] is a popu-
lar in-memory key-value store. It only performs a hash table
lookup for each request, leading to a small per-request mem-
ory footprint. It has low compute intensity and poor spatial
locality. We followed Facebook’s USR distribution to gener-
ate load with 99.8% GET and 0.2% PUT [14]. SocialNet (a

part of the DeathStarBench [27]) is a twitter-like interactive
web application built with microservices. It has a fan-out
pattern in which each client request is served by multiple
microservice instances. This leads to a larger per-request
memory footprint than Memcached. It has medium com-
pute intensity and poor spatial locality. We rewrote Death-
StarBench’s python-based load generator using C++ to in-
crease its throughput. Gdnsd is an authoritative-only DNS
server. It performs a tree lookup for each DNS query. It has
a small per-request memory footprint and low compute inten-
sity. Different from previous applications, Gdnsd has good
spatial locality. We generated queries with random domain
names for evaluation. For all three applications, we gener-
ated requests with keys followed Zipf distribution using the
skewness parameter s = 0.99, to be consistent with the stan-
dard YCSB benchmark suite [22].

Batch applications. Apache Spark [62] is a big data ana-
lytics engine. We used the logistic regression model from its
official example suite for evaluation, in which Spark trains
the model iteratively by scanning the dataset to update the
model parameters. It has high compute intensity and a large
memory footprint. XGBoost is a gradient boosting library
for machine learning. We ran binary classification for eval-
uation. It initializes a group of decision trees and trains
them iteratively by splitting the tree leaves with input data.
It has dynamic parallelism and a medium memory footprint.
Apache Cassandra [9] is a large-scale NoSQL database. It
uses a storage structure similar to a log-structured merge tree,
which has medium compute intensity and good spatial local-
ity. Different from other batch applications, it also periodi-
cally persists in-memory data to disk. We used YCSB [22]
as its workload for evaluation. Both Spark and Cassandra
are Java-based and run atop OpenJDK-11. Java’s garbage
collection makes them more memory intensive. XGBoost is
a native C++ application.

6.2 Tail Latency of Latency-Critical Applications

To better quantify the tail latency overhead introduced
by Hermit, we use low-latency applications enabled by
Shenango (a recent datacenter library OS) [47], for evalu-
ation. With Shenango’s low-latency threading runtime and
network stack, these applications achieve sub-millisecond
tail latency, making it an extremely challenging case for
swap systems. We also rerun the same applications with their
vanilla (Linux-based) versions. The results (in Appendix A)
show similar trends but with higher tail latency for all sys-
tems, including the ideal local-only case. This stems from
the higher overhead of the kernel’s threading and network
stack. Following previous studies [34, 49, 63], we primarily
focus on applications’ 99th percentile latency in our evalua-
tion. The results of other percentiles (including median and
99.9th) can be found in Appendix C.

We first ran applications with a fixed load (50% of load ca-
pacity measured with only using local memory) and varying

50 60 70 80 90 100
Local memory (%)

0

100

200

300

400

500
99

%
La

te
nc

y
(μ

s)

60 70 80 90 100
Local memory (%)

0

200

400

600

800

1000
Linux Fastswap Hermit All local

50 60 70 80 90 100
Local memory (%)

0

100

200

300

400

500

(a) Memcached (2 Mops) (b) SocialNet (0.75 Mops) (c) Gdnsd (4 Mops)

Figure 7: Hermit significantly outperforms Fastswap and Linux in terms of 99% latency under the same fixed load and varying local memory
ratio. Hermit enables applications to operate in a more challenging regime of less local memory while still maintaining < 500 µs 99% latency.

1 2 3 4
Offered load (Mops)

0

100

200

300

400

500

99
%

La
te

nc
y

(μ
s)

0.5 1.0 1.5
Offered load (Mops)

0

200

400

600

800

1000
Linux Fastswap Hermit All local

2 4 6 8
Offered load (Mops)

0

100

200

300

400

500

(a) Memcached (b) SocialNet (c) Gdnsd

Figure 8: Hermit achieves significantly lower 99% latency than Fastswap and Linux under the same fixed local memory ratio and varying
load. For Memcached and Gdnsd, Hermit achieves 99% latency close to the ideal local-only case. SocialNet is more challenging due to its
higher per-request memory footprint, but Hermit still achieves 74% load capacity of the ideal case.

local memory ratios. We measured the application perfor-
mance on Linux, Fastswap, Hermit, and the ideal setup that
only uses local memory (see Figure 7). The original Linux
does not have an RDMA-based swap backend. To enable
a fair comparison, we extended it to use Fastswap’s RDMA
backend. On Figure 7, the X-axis shows the ratio of the local
memory provisioned; the Y-axis shows the 99th percentile
latency achieved by Linux, Fastswap, Hermit, and the ideal
setup.

Intuitively, both Fastswap and Hermit achieve ideal perfor-
mance when only using local memory. When we decrease
the local memory ratio, latency increases as remote accesses
become more frequent. However, Hermit’s latency increases
slower than Fastswap, revealing it is more tolerant to remote
accesses. This is because Hermit’s overhead of accessing
remote memory is lower, thanks to its shorter swap-in path
and its reclaim scheduler that eliminates direct reclamation
(§6.4.1). As Hermit adaptively changes the number of re-
claim threads to match the reclamation rate with the swap-in
rate, it can result in competition for CPU resources if the lo-
cal memory ratio is small enough. Eventually, both systems
encounter a “hockey-stick” when they cannot handle the ex-
cessive remote memory accesses. Compared to Fastswap,
Hermit enables applications to operate in a more challenging
regime of less local memory while still maintaining < 500 µs
99th percentile latency.

Specifically, the low compute intensity of Memcached and
Gdnsd aligns with Hermit’s optimizations well; they only re-

quire a few CPU cores for serving load, leaving the rest of the
cores for reclamation. Moreover, thanks to their small per-
request memory footprints, they only require a small num-
ber of reclaim threads. For Memcached, Hermit has to rely
on more than four reclaim threads to keep up with frequent
swap-ins when Memcached runs under < 60% local memory
ratio. The CPU contention gets more severe when local mem-
ory gets smaller, and the system reaches 70% CPU utiliza-
tion under 58% local memory ratio. Afterward, Hermit’s re-
claim threads can heavily interfere and block Memcached’s
threads, thus ramping up the tail latency. Similarly, Gdnsd
on Hermit used ∼72% CPU cycles when running under 56%
local memory ratio, and the system can no longer maintain
low 99th percentile latency afterward. Fastswap’s single ded-
icated core fails to keep up with the increasing page reclama-
tion demand when local memory ratio is lower than 76% and
82% for Memcached and Gdnsd, respectively, which ramps
up their 99th percentile latency. To conclude, Hermit pushes
the operating regime in terms of local memory ratio from
75% (i.e., Fastswap) to 55% for Memcached, and from 80%
to 55% for Gdnsd. Gdnsd has a slightly better result due to
its better spatial locality. SocialNet is a more challenging ap-
plication that has a higher compute intensity and a larger per-
request memory footprint. It requires more reclaim threads
which compete with application threads more heavily under
low local memory ratios. The system used 70% of its CPU
resources under 65% local memory ratio, and saturated all
CPU cores under 60% local memory ratio. Hermit pushes its

regime from 75% local memory ratio to 65%. In summary,
Hermit enables applications to store an average of 20% more
working set in remote memory without breaking the tail la-
tency target, thereby harnessing stranded memory resources
more efficiently.

Next, we fixed the local memory ratio to 70% and mea-
sured the tail latency of applications with varying load (see
Figure 8). Under low load, both Fastswap and Hermit en-
counter higher latency than the local-only case due to addi-
tional remote memory accesses. Hermit delivers lower la-
tency than Fastswap due to the cheaper remote accesses it of-
fers. For Memcached and Gdnsd whose per-request memory
footprint is smaller, Hermit reduces 99th percentile latency
by 3–9 µs, whereas for SocialNet, Hermit reduces latency
by 43–86 µs.

Under high load, the latency gap becomes wider be-
cause of the CPU contention between application and asyn-
chronous reclaim threads. In this case, application threads
access remote memory intensively, therefore triggering mem-
ory reclamation frequently. The asynchronous reclaim
threads impact application performance by contending CPU
resources. Hermit experiences lower performance degrada-
tion because of its asynchronous and more CPU-efficient de-
sign of memory reclamation (§6.4.2). By eliminating block-
ing induced by direct reclamation and shifting more CPU
resources from reclamation to application, Hermit handles
higher load than Fastswap under the same local memory ratio
while still maintaining < 500 µs 99th percentile latency. Her-
mit improves the load capacity by 3.2× (from 1.1 Mops to
3.5 Mops) for Memcached, and 1.7× (from 4.0 Mops to 6.8
Mops) for Gdnsd. Notably, compared to the ideal local-only
case, Hermit enables these applications to enjoy the benefit
of remote memory with only an average of 20% decrease in
their load capacity. It is more challenging to handle Social-
Net well due to its larger per-request memory footprint and
higher compute intensity. As a result, the number of reclaim
threads needed increases quickly with the load, deteriorating
the contention with application threads. Even though, Her-
mit still improves SocialNet’s capacity by 1.5× (from 0.75
Mops to 1.15 Mops).

6.3 Throughput of Batch Applications

In this section, we evaluate the throughput of batch applica-
tions under varying local memory ratios (see Figure 9). Her-
mit outperforms both Fastswap and Linux. It only requires
45%–70% local memory to achieve at least 80% of the ideal
throughput for all applications. In contrast, Fastswap (i.e.
the better baseline) has to use an average of 20% more lo-
cal memory to achieve the same throughput. Even under
the extremely challenging case of 20% local memory, Her-
mit is still able to preserve 40%–60% of applications’ ideal
throughput. This leads to 1.23×–1.87× improvement over
Fastswap.

When Spark runs atop Fastswap, its throughput drops sig-
nificantly when running with < 40% local memory. Our
profiling reveals that swapping becomes extremely frequent
in this case, triggering the scalability bottleneck in kernel’s
page reclamation path. Hermit does not suffer from the same
issue due to two reasons. First, Hermit significantly reduces
the direct reclamation ratio by performing reclamation asyn-
chronously and timely. Therefore, it confines reclamation
into a small number of reclaim threads rather than all the
application threads (in direct reclamation). Second, Her-
mit’s CPU-efficient reclamation design reduces the number
of threads needed, further alleviating the scalability issue.

20 40 60 80 1000.2

0.4

0.6

0.8

1.0

N
or

m
al

iz
ed

Th
ro

ug
hp

ut

All local Linux Fastswap Hermit

20 40 60 80 100
Local memory (%)

20 40 60 80 100

(a) Spark (68.4s) (b) XGBoost (42.2s) (c) Cassandra (72.6s)

Figure 9: We measured the throughput of batch applications
achieved by different swap systems normalized to the ideal local-
only setup. Hermit outperforms other baselines. The number in the
parenthesis shows the ideal execution time.

6.4 Design Drill-Down

We now evaluate specific aspects of Hermit’s design to under-
stand their individual contributions to overall performance.

6.4.1 Remote Memory Access Latency

Hermit reduces remote memory access latency by shorten-
ing the critical path of swap-ins. Figure 10 breaks down the
improvements brought by specific optimizations, including
bypassing deduplication and using asynchronous I/O. The re-
sults are measured using Memcached. Without Hermit’s opti-
mizations, the original Linux spends 2.8 µs on swap-in dedu-
plication. Hermit eliminates this overhead entirely by oppor-
tunistically bypassing the deduplication, see Figure 11. After
enabling asynchronous I/O, Hermit further overlaps I/O read
with other swap-in operations (e.g., cgroup accounting and
metadata updating), reducing the swap-in latency by another
0.9 µs. With both optimizations turned on, Hermit reduces
the page fault handling latency by 35%, from 13.8 µs to 10.2
µs. The RDMA backend spends 9 µs on performing a 4KiB-
page I/O. This indicates that Hermit reduces the overhead of
the swap system by a factor of four, from 4.8 µs to only 1.2
µs.

6.4.2 Page Reclamation Efficiency

To demonstrate Hermit’s improvements on page reclamation
efficiency, we ran Memcached and measured the per-thread

0 5 10 15
Time (μs; mean)

Linux Swap

+Bypass
Dedup

+Async. I/O

Lookup Swap Cache
Dedup. Swap-ins
cgroup Accounting
I/O Read
Update Metadata &
Set PTE

Figure 10: Hermit reduces the remote memory access latency in
Memcached from 13.8 µs to 10.2 µs with two optimizations, i.e.,
bypassing deduplication and using asynchronous I/O.

1 2 3 4
Offered load (Mops)

0

25

50

75

D
ire

ct
Re

cl
ai

m
R

at
io

(%
) Fastswap

Hermit

Figure 11: Hermit entirely eliminates direct reclamation for Mem-
cached, thanks to its asynchronous reclamation design. Fastswap
fails to serve > 2.4 Mops load due to CPU congestion.

Linux
Swap

+rmap
Elimination

+Batched
TLB

+Batched
Accounting

+Batched
I/O

0K

100K

200K

Re
cl

ai
m

Th
ro

ug
hp

ut
(#

pa
ge

s/
s)

Figure 12: Eliminating reverse mappings and enabling more batch-
ing makes reclamation 2.9× more efficient.

reclamation throughput, see Figure 12. As shown by the left-
most bar, the original Linux achieves 77K pages/s reclama-
tion throughput. Hermit’s rmap elimination optimization ef-
fectively improves the throughput by 37%, as most of pages
are private in Memcached. Batching TLB shootdowns and
cgroup accountings amoritizes their overheads and brings
an additional 27% and 3% improvement, respectively. Fi-
nally, Hermit batches I/O writes for dirty pages and overlaps
them with the page release phase. This significantly reduces
the time wasted on polling for the write completion, generat-
ing a 75% further improvement. Our further profiling reveals
that Hermit reduces the per-page overhead of rmap by 59%
from 1.70 µs to 0.69 µs, TLB shootdown by 92% from 2.45
µs to 0.20 µs, and I/O writes by 88% from 6.47 µs to 0.76
µs. To summarize, Hermit improves the single-thread page
reclamation throughput from 77K pages/s to 221K pages/s,
making reclamation 2.9× more efficient.

6.4.3 Effectiveness of Feedback-directed Asynchrony

To demonstrate the importance of Hermit’s feedback-
directed asynchrony, we modified Hermit’s reclaim sched-
uler to use Fastswap’s static scheduling policy. The new ver-
sion Hermit∗ uses a fixed number of reclaim threads and
starts reclamation only when the free local memory size falls
below 8 MiB. Figure 13 shows the results of Memcached.

1 2 3 4
Offered load (Mops)

0
100
200
300
400
500

99
%

La
te

nc
y

(μ
s) Fastswap

Hermit*-1 thread
Hermit*-2 threads
Hermit*-4 threads
Hermit
All Local

Figure 13: Hermit’s feedback-directed asynchrony is indispensable
for achieving superior performance. Hermit considerably outper-
forms all Hermit∗s—the modified versions that adopt Fastswap’s
static scheduling policy for reclamation.

Hermit consistently outperforms all variants of Hermit∗,
regardless of the number of reclaim threads statically config-
ured. Our further profiling reveals that the memory pressure
during Memcached’s execution varies over time. In most
cases, it only requires ≤2 reclaim threads to mitigate the pres-
sure. However, upon sudden bursts of requests, it needs up
to 4 threads to fully keep up with the demand. Hermit’s re-
claim scheduler dynamically adjusts the number of reclaim
threads to adapt to the changes in demand, thereby achieving
superior performance to its static counterparts.

6.4.4 Breaking Down End-to-End Speedup

1 2 3 4
Offered load (Mops)

0
100
200
300
400
500

99
%

La
te

nc
y

(μ
s) Linux

Fastswap
+ Feedback-
Directed Async.
+ Efficient
Reclamation
+ Fast Swap-in
All Local

Figure 14: All three of Hermit’s optimizations work in tandem to
improve Memcached’s latency and throughput. Results are mea-
sured with 70% local memory.

We evaluated the individual contribution of each of the
three optimizations (§6.4.1-§6.4.3) to the overall application
performance.

For latency-critical applications, we used Memcached as
the representative. We re-ran Memcached with the same con-
figuration as Figure 8 (a) with optimizations enabled incre-
mentally. Figure 14 reports the results. Linux even fails
to handle low load of 0.5 Mops under 70% local memory,
as it frequently triggers direct reclamation which can easily
prolong Memcached’s 99th percentile latency by hundreds
of microseconds. Fastswap outperforms Linux by offload-
ing reclamation to a dedicated core. However, the applica-
tion quickly saturates the core’s reclamation capacity once
the load reaches 1.1 Mops, and starts to trigger direct recla-
mation again (see Figure 11). This prevents Fastswap from
maintaining low 99th percentile latency afterward.

With the reclaim scheduler (§4.2), Hermit can handle a
much higher load, 2.5 Mops, before the latency starts to
spike. This is because Hermit’s reclaim scheduler proac-
tively and timely starts asynchronous reclamation, eliminat-

ing the blocking caused by direct reclamation. Optimizations
in the reclamation path (§4.4) reduce the amount of CPU re-
sources required. This alleviates the contention between re-
claim threads and application threads, adding 0.4 Mops to
the load capacity. Finally, optimizations in the swap-in path
(§4.3) make remote memory accesses faster and reduce the
per-request processing time, thereby enabling Memcached
to achieve higher load with the same amount of compute.
Putting them all together, Hermit helps Memcached reach
3.5 Mops using 70% local memory while maintaining 99th

percentile latency under 250 µs.

Linux
Swap

+ Reclaim
Scheduler

+ Efficient
Reclamation

+ Fast
Swap-in

1

2

3

4

N
or

m
al

iz
ed

Ex
ec

ut
io

n
Ti

m
e All local

Figure 15: All three of Hermit’s optimizations collectively improve
Spark’s throughput. The Y-axis shows the execution time normal-
ized to the ideal local-only time (68.4s). Results are measured under
20% local memory.

For batch applications, we used Spark as the representa-
tive and re-ran it under 20% local memory with the same con-
figuration as Figure 9(a). Figure 15 breaks down the perfor-
mance improvements. Our reclaim scheduler again improves
the application throughput by a large margin (31%) due to
the following reasons. First, batch applications usually fol-
low the epochal hypothesis [46], whose compute and mem-
ory behaviors vary during an epoch but repeat across epochs.
Asynchronous reclamation unleashes the hidden parallelism
by speculatively reclaiming pages, making it possible for re-
claim threads to efficiently harness idle compute resources in
each epoch. Second, Linux swap frequently triggers massive
direct reclamations instantaneously, causing severe lock con-
tentions between page faults handlings (swap-in) and recla-
mation. Hermit avoids the burst of reclamation and greatly
alleviates the contention by reclaiming asynchronously and
proactively. Further, optimizations on the page reclamation
path and the swap-in path collectively improve the swap ef-
ficiency: they yield an additional 10% and 4% throughput
improvement, respectively.

6.4.5 Resource Consumption of Swap Operations
Network Bandwidth. Hermit performs swap operations
eagerly to improve performance. It opportunistically by-
passes swap-in deduplication to reduce swap-in latency
(§4.3) and proactively schedules asynchronous reclaim
threads to avoid direct reclamation (§4.2). These optimiza-
tions offer performance benefits potentially at the cost of ad-
ditional network usage. For example, Hermit might swap in
the same page several times in the presence of concurrent
page faults. To confirm that Hermit does not incur excessive
network traffic, we measure the network bandwidth used for

swap-ins and swap-outs, and compare it with Fastswap’s us-
age.

Figure 16 shows the results when running Memcached.
The X-axis shows the offered load while the Y-axis shows
the average network bandwidth. The error bar quantifies
the bandwidth fluctuation during the application’s execu-
tion. With higher offered load, both Fastswap and Hermit
use more network bandwidth as Memcached swaps memory
more frequently. The bandwidth usage in swap-outs is lower
than in swap-in as clean pages do not need to be written back
during reclamation.

For swap-in, Hermit incurs similar network bandwidth us-
age compared to Fastswap. This is consistent with our fur-
ther investigation which reveals that the conflict rate (i.e. the
ratio of concurrent page faults that swap in the same page) is
less than 0.07%. Therefore, Hermit’s swap-in optimization
barely introduces any extra network overhead in practice.

For swap-out, we break down the total bandwidth con-
sumption into the usage of asynchronous swap-out and
direct swap-out. Hermit is able to constantly perform
asynchronous reclamation without using additional network
bandwidth compared to Fastswap. This makes sense as Her-
mit’s optimizations to reclamation timing and efficiency do
not inflate the number of reclaimed pages.

0.3 0.6 0.8 1.1 1.5 2.1 3.4 3.6
Offered load (Mops)

(a) Swap-in.

0

500

1000

1500

B
an

dw
id

th
(M

B
/s

)

0.3 0.6 0.8 1.1 1.5 2.1 3.4 3.6
Offered load (Mops)

(b) Swap-out.

Fastswap-Async
Fastswap-Direct

Hermit-Async
Hermit-Direct

Figure 16: Hermit’s optimizations do not incur additional network
usage during swap-ins/-outs compared to Fastswap.

0.3 0.6 0.9 1.3 1.7 2.1 2.5 2.9 3.4 3.6
Offered load (Mops)

0

50

100

C
PU

U
sa

ge
(%

)

Fastswap Hermit

Figure 17: Hermit saves ∼30% CPU cycles under varying load
compared with Fastswap, which is the key enabler to achieve low
99th percentile latency under high load.

CPU Cycles. We also profiled the CPU usage of applica-
tions running on Fastswap and Hermit, revealing that Her-
mit can serve much higher load with the same amount of
CPU resources. Figure 17 depicts the total CPU usage of
Memcached and Hermit’s reclaim threads under 70% local
memory ratio and varying load. When increasing load, both
Fastswap and Hermit use more CPU cycles as Memcached

swaps more frequently. We observed that Memcached fails
to use > 70% CPU cycles due to its internal lock contention
on hot slabs under skewed workloads. Even though Her-
mit can spawn more reclaim threads than Fastswap (when
needed), it uses 20%–30% fewer CPU resources overall,
thanks to its feedback-directed asynchrony and more effec-
tive use of batching. Therefore, Hermit is able to offer 32%
higher load capacity for Memcached compared to Fastswap.

7 Related Work
Resource Disaggregation. Datacenters today suffer from
poor average resource utilization due to overprovisioning
[41, 56]. Resource disaggregation, an idea that dates back
to 1990s [12, 23, 31, 45, 61], has gained renewed inter-
est, thanks to the high performance of modern datacenter
networks [16, 19, 28]. Its key idea is to break the server
boundary and unstrand idle resources of remote servers over
the network. Existing systems have demonstrated the fea-
sibility of disaggregating various types of resources, includ-
ing storage [32, 35, 37], accelerators [6, 20], and memory
[10, 43, 52, 57]. Some other systems focus on improving the
reliability of disaggregated datacenters [33, 64]. We focus on
memory disaggregation (i.e., remote memory) in this paper.
Kernel-based Remote Memory. To provide transparency
to existing applications, the kernel-based approach leverages
OS paging to access and manage remote memory. Most
kernel-based systems build upon Linux, including Hermit.
Infiniswap [29] is an early work that integrates Linux’s
swap subsystem with an RDMA-based block device backend.
Later, Fastswap [10] leverages the lightweight frontswap
interface of Linux to reduce overhead and offloads page
reclamation to a dedicated core. Leap [43] improves Linux’s
prefetcher to achieve a higher local memory hit ratio. Can-
vas [59] isolates swap paths for co-running applications.
The ongoing advances of Linux’s virtual memory subsys-
tem from the kernel community also benefit Linux-based re-
mote memory. These include, but are not limited to multi-
generational LRU [55], speculative page faults [4], maple-
tree-based VMAs [2], and DAMON-based proactive page
reclamation [5]. Finally, LegoOS [53] makes larger changes
to both the kernel and hardware with the goal of achieving
better performance through a clean-slate approach.
Library-based Remote Memory. Library-based ap-
proaches bypasses the OS to reduce kernel overhead and
overcome the granularity restrictions imposed by paging.
They trade application transparency for performance;
application developers often have to modify their code to
use new remote memory APIs. FaRM [25] and KVDirect
[38] expose remote memory with an external key-value
store interface which mismatches with the construction
of existing applications. Distributed shared memory (e.g.,
[40, 44]), on the other hand, provides an object-oriented
interface that is more user-friendly. AIFM [52] proposes a
higher-level abstraction of remote-able data structure, but

but it still requires effort to port applications. Semeru [57],
Mako [42], and MemLiner [58] are JVM-based remote
memory runtimes, offering transparency to Java applications
by co-designing the JVM with the kernel.

Hardware-accelerated Remote Memory. Another type
of work proposes novel hardware designs, thereby unlock-
ing new opportunities for optimizing remote memory. While
Hermit focuses on the software layer, it could benefit from
advances to the underlying hardware. PBerry [18] and Kona
[17] overcome the granularity restriction of paging and en-
able cache-line-level remote memory access. Clio [30],
StRoM [54], and RMC [11] reduce the expensive network
traffic by offloading tasks into the customized hardware of
the memory server. Finally, the emerging CXL bus [39] may
lower the performance cost of accessing remote memory by
delivering lower latency and near-local-DRAM throughput.

Multi-tiered Memory System. Recent research has fo-
cused on overcoming DRAM’s capacity wall through
the use of slower memory/storage devices—such as com-
pressed memory, non-volatile memory (NVM), NVMe SSD,
etc. Two examples of such systems are TMO [60] and
HeMem [50], which transparently offload main memory to
slower tiers. TMO focuses on developing a policy for deter-
mining which data to offload and how much, whereas Hermit
aims at building an efficient offloading mechanism. HeMem
targets improving throughput for batch applications. There-
fore, it treats page offloading as a time-insensitive operation
and performs it in the background. In contrast, Hermit opti-
mizes for both batch and latency-critical applications by con-
ducting page reclamation timely and proactively.

8 Conclusion

In this paper, we presented Hermit, a re-architected swap sys-
tem that is based on adaptive, feedback-directed asynchrony.
Our evaluation shows that Hermit significantly outperforms
Fastswap (the state-of-the-art swap system) in real data cen-
ter applications; it reduces the 99th percentile tail latency by
99.7% and improves the throughput by 1.24× on average.
Hermit defies the conventional wisdom about kernel-based
remote memory, demonstrating that it is possible to achieve
both full transparency and high performance simultaneously.

Acknowledgements

We thank the anonymous reviewers for their valuable and
thorough comments. We are grateful to our shepherd
Michael Wei for his feedback. This work is supported by
NSF grants CNS-1703598, CCF-1723773, CNS-1763172,
CCF-1764077, CNS-1907352, CHS-1956322, CNS-
2007737, CNS-2006437, CNS-2128653, CCF-2106404,
CNS-2106838, CNS-2147909, CNS-2104398, ONR grant
N00014-18-1-2037, research grants from Cisco, Intel CAPA,
VMware, and Samsung, and a gift from Amazon.

References
[1] gdnsd - an authoritative-only dns server. https://

gdnsd.org/.

[2] Introducing maple trees. https://lwn.net/
Articles/845507/.

[3] NVMe over fabrics. http://
community.mellanox.com/s/article/
what-is-nvme-over-fabrics-x.

[4] Speculative page faults. https://lwn.net/
Articles/851853/.

[5] Using damon for proactive reclaim. https://lwn.
net/Articles/863753/.

[6] Virtual gpu (vgpu) | nvidia. https://
www.nvidia.com/en-us/data-center/
virtual-solutions/.

[7] Memcached - a distributed memory object caching sys-
tem. http://memcached.org, 2020.

[8] Wikipedia networks data. http://konect.
uni-koblenz.de/networks/, 2020.

[9] Apache cassandra. https://cassandra.
apache.org, 2021.

[10] E. Amaro, C. Branner-Augmon, Z. Luo, A. Ouster-
hout, M. K. Aguilera, A. Panda, S. Ratnasamy, and
S. Shenker. Can far memory improve job throughput?
In EuroSys, 2020.

[11] E. Amaro, Z. Luo, A. Ousterhout, A. Krishnamurthy,
A. Panda, S. Ratnasamy, and S. Shenker. Remote mem-
ory calls. In Proceedings of the 19th ACM Workshop
on Hot Topics in Networks, HotNets ’20, pages 38–44,
New York, NY, USA, 2020. Association for Computing
Machinery.

[12] T. Anderson, D. Culler, and D. Patterson. A case
for now (networks of workstations). IEEE Micro,
15(1):54–64, 1995.

[13] D. Ardelean, A. Diwan, and C. Erdman. Performance
analysis of cloud applications. In 15th USENIX Sym-
posium on Networked Systems Design and Implemen-
tation (NSDI 18), pages 405–417, Renton, WA, Apr.
2018. USENIX Association.

[14] B. Atikoglu, Y. Xu, E. Frachtenberg, S. Jiang, and
M. Paleczny. Workload analysis of a large-scale key-
value store. In Proceedings of the 12th ACM SIGMET-
RICS/PERFORMANCE Joint International Conference
on Measurement and Modeling of Computer Systems,
SIGMETRICS ’12, pages 53–64, New York, NY, USA,
2012. Association for Computing Machinery.

[15] P. Baldi, P. Sadowski, and D. Whiteson. Searching for
exotic particles in high-energy physics with deep learn-
ing. Nature communications, 5(1):1–9, 2014.

[16] L. A. Barroso. Warehouse-scale computing: Entering
the teenage decade. In ISCA, 2011.

[17] I. Calciu, M. T. Imran, I. Puddu, S. Kashyap, H. A.
Maruf, O. Mutlu, and A. Kolli. Rethinking Software
Runtimes for Disaggregated Memory, pages 79–92. As-
sociation for Computing Machinery, New York, NY,
USA, 2021.

[18] I. Calciu, I. Puddu, A. Kolli, A. Nowatzyk, J. Gandhi,
O. Mutlu, and P. Subrahmanyam. Project pberry: Fpga
acceleration for remote memory. HotOS ’19, pages
127–135, New York, NY, USA, 2019. Association for
Computing Machinery.

[19] A. Carbonari and I. Beschasnikh. Tolerating faults in
disaggregated datacenters. In HotNets-XVI, pages 164–
170, 2017.

[20] A. M. Caulfield, E. S. Chung, A. Putnam, H. Angepat,
J. Fowers, M. Haselman, S. Heil, M. Humphrey,
P. Kaur, J.-Y. Kim, D. Lo, T. Massengill, K. Ovtcharov,
M. Papamichael, L. Woods, S. Lanka, D. Chiou, and
D. Burger. A cloud-scale acceleration architecture. In
The 49th Annual IEEE/ACM International Symposium
on Microarchitecture, MICRO-49. IEEE Press, 2016.

[21] T. Chen and C. Guestrin. extreme gradient boosting
for applied machine learning. https://xgboost.
readthedocs.io/en/latest/, 2021.

[22] B. F. Cooper, A. Silberstein, E. Tam, R. Ramakrishnan,
and R. Sears. Benchmarking cloud serving systems
with ycsb. In Proceedings of the 1st ACM Symposium
on Cloud Computing, SoCC ’10, pages 143–154, New
York, NY, USA, 2010. Association for Computing Ma-
chinery.

[23] M. D. Dahlin, R. Y. Wang, T. E. Anderson, and D. A.
Patterson. Cooperative caching: Using remote client
memory to improve file system performance. In Pro-
ceedings of the 1st USENIX Conference on Operating
Systems Design and Implementation, OSDI ’94, pages
19–es, USA, 1994. USENIX Association.

[24] C. Delimitrou and C. Kozyrakis. Amdahl’s law for tail
latency. Commun. ACM, 61(8):65–72, jul 2018.

[25] A. Dragojević, D. Narayanan, M. Castro, and O. Hod-
son. FaRM: Fast remote memory. In NSDI, pages 401–
414, 2014.

[26] S. Floyd and V. Jacobson. Random early detection gate-
ways for congestion avoidance. IEEE/ACM Transac-
tions on Networking, 1(4):397–413, 1993.

https://gdnsd.org/
https://gdnsd.org/
https://lwn.net/Articles/845507/
https://lwn.net/Articles/845507/
http://community.mellanox.com/s/article/what-is-nvme-over-fabrics-x
http://community.mellanox.com/s/article/what-is-nvme-over-fabrics-x
http://community.mellanox.com/s/article/what-is-nvme-over-fabrics-x
https://lwn.net/Articles/851853/
https://lwn.net/Articles/851853/
https://lwn.net/Articles/863753/
https://lwn.net/Articles/863753/
https://www.nvidia.com/en-us/data-center/virtual-solutions/
https://www.nvidia.com/en-us/data-center/virtual-solutions/
https://www.nvidia.com/en-us/data-center/virtual-solutions/
http://konect.uni-koblenz.de/networks/
http://konect.uni-koblenz.de/networks/
https://cassandra.apache.org
https://cassandra.apache.org
https://xgboost.readthedocs.io/en/latest/
https://xgboost.readthedocs.io/en/latest/

[27] Y. Gan, Y. Zhang, D. Cheng, A. Shetty, P. Rathi,
N. Katarki, A. Bruno, J. Hu, B. Ritchken, B. Jack-
son, et al. An open-source benchmark suite for mi-
croservices and their hardware-software implications
for cloud & edge systems. In Proceedings of the
Twenty-Fourth International Conference on Architec-
tural Support for Programming Languages and Oper-
ating Systems, pages 3–18, 2019.

[28] P. X. Gao, A. Narayan, S. Karandikar, J. Carreira,
S. Han, R. Agarwal, S. Ratnasamy, and S. Shenker.
Network requirements for resource disaggregation. In
OSDI, pages 249–264, 2016.

[29] J. Gu, Y. Lee, Y. Zhang, M. Chowdhury, and K. G. Shin.
Efficient memory disaggregation with infiniswap. In
NSDI, pages 649–667, 2017.

[30] Z. Guo, Y. Shan, X. Luo, Y. Huang, and Y. Zhang.
Clio: A hardware-software co-designed disaggregated
memory system. In Proceedings of the 27th ACM In-
ternational Conference on Architectural Support for
Programming Languages and Operating Systems, ASP-
LOS 2022, pages 417–433, New York, NY, USA, 2022.
Association for Computing Machinery.

[31] D. Gupta, S. Lee, M. Vrable, S. Savage, A. C. Snoeren,
G. Varghese, G. M. Voelker, and A. Vahdat. Difference
engine: Harnessing memory redundancy in virtual ma-
chines. Commun. ACM, 53(10):85–93, oct 2010.

[32] J. Hwang, Q. Cai, A. Tang, and R. Agarwal. TCP ≈
RDMA: CPU-efficient remote storage access with i10.
In 17th USENIX Symposium on Networked Systems De-
sign and Implementation (NSDI 20), pages 127–140,
Santa Clara, CA, Feb. 2020. USENIX Association.

[33] S. Kadekodi, F. Maturana, S. Athlur, A. Merchant, K. V.
Rashmi, and G. R. Ganger. Tiger: Disk-Adaptive
redundancy without placement restrictions. In 16th
USENIX Symposium on Operating Systems Design and
Implementation (OSDI 22), pages 413–429, Carlsbad,
CA, July 2022. USENIX Association.

[34] A. Kalia, M. Kaminsky, and D. G. Andersen. FaSST:
Fast, scalable and simple distributed transactions with
two-sided (RDMA) datagram RPCs. In OSDI, pages
185–201, 2016.

[35] A. Klimovic, H. Litz, and C. Kozyrakis. ReFlex: Re-
mote flash ≈ local flash. In ASPLOS, pages 345–359,
2017.

[36] A. Lagar-Cavilla, J. Ahn, S. Souhlal, N. Agarwal,
R. Burny, S. Butt, J. Chang, A. Chaugule, N. Deng,
J. Shahid, G. Thelen, K. A. Yurtsever, Y. Zhao, and
P. Ranganathan. Software-defined far memory in

warehouse-scale computers. In ASPLOS, pages 317–
330, 2019.

[37] S. Legtchenko, H. Williams, K. Razavi, A. Donnelly,
R. Black, A. Douglas, N. Cheriere, D. Fryer, K. Mast,
A. D. Brown, A. Klimovic, A. Slowey, and A. Row-
stron. Understanding rack-scale disaggregated storage.
In HotStorage, 2017.

[38] B. Li, Z. Ruan, W. Xiao, Y. Lu, Y. Xiong, A. Putnam,
E. Chen, and L. Zhang. Kv-direct: High-performance
in-memory key-value store with programmable nic. In
Proceedings of the 26th Symposium on Operating Sys-
tems Principles, SOSP ’17, pages 137–152, New York,
NY, USA, 2017. Association for Computing Machin-
ery.

[39] H. Li, D. S. Berger, S. Novakovic, L. Hsu, D. Ernst,
P. Zardoshti, M. Shah, I. Agarwal, M. D. Hill, M. Fon-
toura, and R. Bianchini. First-generation memory dis-
aggregation for cloud platforms, 2022.

[40] K. Li and P. Hudak. Memory coherence in shared
virtual memory systems. ACM Trans. Comput. Syst.,
7(4):321–359, Nov. 1989.

[41] C. Lu, K. Ye, G. Xu, C. Xu, and T. Bai. Imbalance in
the cloud: An analysis on Alibaba cluster trace. In Big
Data, pages 2884 – 2892, 2017.

[42] H. Ma, S. Liu, C. Wang, Y. Qiao, M. D. Bond,
S. M. Blackburn, M. Kim, and G. H. Xu. Mako:
A low-pause, high-throughput evacuating collector for
memory-disaggregated datacenters. In PLDI, 2022.

[43] H. A. Maruf and M. Chowdhury. Effectively prefetch-
ing remote memory with Leap. In USENIX ATC, pages
843–857, 2020.

[44] J. Nelson, B. Holt, B. Myers, P. Briggs, L. Ceze, S. Ka-
han, and M. Oskin. Latency-tolerant software dis-
tributed shared memory. In USENIX ATC, pages 291–
305, 2015.

[45] T. Newhall, S. Finney, K. Ganchev, and M. Spiegel.
Nswap: A network swapping module for linux clusters.
In European Conference on Parallel Processing, 2003.

[46] K. Nguyen, L. Fang, G. Xu, B. Demsky, S. Lu,
S. Alamian, and O. Mutlu. Yak: A high-performance
big-data-friendly garbage collector. In OSDI, pages
349–365, 2016.

[47] A. Ousterhout, J. Fried, J. Behrens, A. Belay, and
H. Balakrishnan. Shenango: Achieving high CPU ef-
ficiency for latency-sensitive datacenter workloads. In
NSDI, pages 361–378, 2019.

[48] S. Peter, J. Li, I. Zhang, D. R. K. Ports, D. Woos, A. Kr-
ishnamurthy, T. Anderson, and T. Roscoe. Arrakis: The
operating system is the control plane. In OSDI, pages
1–16, 2014.

[49] A. Raybuck, T. Stamler, W. Zhang, M. Erez, and S. Pe-
ter. Hemem: Scalable tiered memory management for
big data applications and real nvm. In Proceedings of
the ACM SIGOPS 28th Symposium on Operating Sys-
tems Principles, SOSP ’21, pages 392–407, New York,
NY, USA, 2021. Association for Computing Machin-
ery.

[50] A. Raybuck, T. Stamler, W. Zhang, M. Erez, and S. Pe-
ter. Hemem: Scalable tiered memory management for
big data applications and real nvm. In Proceedings of
the ACM SIGOPS 28th Symposium on Operating Sys-
tems Principles, SOSP ’21, pages 392–407, New York,
NY, USA, 2021. Association for Computing Machin-
ery.

[51] R. A. Rossi and N. K. Ahmed. The network data repos-
itory with interactive graph analytics and visualization.
In AAAI, 2015.

[52] Z. Ruan, M. Schwarzkopf, M. K. Aguilera, and A. Be-
lay. AIFM: High-performance, application-integrated
far memory. In 14th USENIX Symposium on Operating
Systems Design and Implementation (OSDI 20), pages
315–332. USENIX Association, Nov. 2020.

[53] Y. Shan, Y. Huang, Y. Chen, and Y. Zhang. LegoOS:
A disseminated, distributed OS for hardware resource
disaggregation. In OSDI, pages 69–87, 2018.

[54] D. Sidler, Z. Wang, M. Chiosa, A. Kulkarni, and
G. Alonso. Strom: Smart remote memory. In Pro-
ceedings of the Fifteenth European Conference on Com-
puter Systems, EuroSys ’20, New York, NY, USA,
2020. Association for Computing Machinery.

[55] The OCP Foundation. Multi-generational lru: the
next generation. https://lwn.net/Articles/
856931/.

[56] M. Tirmazi, A. Barker, N. Deng, M. E. Haque, Z. G.
Qin, S. Hand, M. Harchol-Balter, and J. Wilkes. Borg:
The next generation. In EuroSys, 2020.

[57] C. Wang, H. Ma, S. Liu, Y. Li, Z. Ruan, K. Nguyen,
M. D. Bond, R. Netravali, M. Kim, and G. H. Xu. Se-
meru: A memory-disaggregated managed runtime. In
14th USENIX Symposium on Operating Systems De-
sign and Implementation (OSDI 20), pages 261–280.
USENIX Association, Nov. 2020.

[58] C. Wang, H. Ma, S. Liu, Y. Qiao, J. Eyolfson,
C. Navasca, S. Lu, and G. H. Xu. MemLiner: Lining up
tracing and application for a far-memory-friendly run-
time. In OSDI, 2022.

[59] C. Wang, Y. Qiao, H. Ma, S. Liu, Y. Zhang, W. Chen,
R. Netravali, M. Kim, and G. H. Xu. Canvas: Iso-
lated and adaptive swapping for multi-applications on
remote memory. In NSDI, 2023.

[60] J. Weiner, N. Agarwal, D. Schatzberg, L. Yang,
H. Wang, B. Sanouillet, B. Sharma, T. Heo, M. Jain,
C. Tang, and D. Skarlatos. Tmo: Transparent mem-
ory offloading in datacenters. In Proceedings of the
27th ACM International Conference on Architectural
Support for Programming Languages and Operating
Systems, ASPLOS ’22, pages 609–621, New York, NY,
USA, 2022. Association for Computing Machinery.

[61] D. Williams, H. Jamjoom, Y.-H. Liu, and H. Weather-
spoon. Overdriver: Handling memory overload in an
oversubscribed cloud. SIGPLAN Not., 46(7):205–216,
Mar 2011.

[62] M. Zaharia, M. Chowdhury, M. J. Franklin, S. Shenker,
and I. Stoica. Spark: Cluster computing with working
sets. HotCloud, page 10, Berkeley, CA, USA, 2010.

[63] I. Zhang, A. Raybuck, P. Patel, K. Olynyk, J. Nelson,
O. S. N. Leija, A. Martinez, J. Liu, A. K. Simpson,
S. Jayakar, P. H. Penna, M. Demoulin, P. Choudhury,
and A. Badam. The demikernel datapath os architecture
for microsecond-scale datacenter systems. In SOSP,
pages 195–211, 2021.

[64] Y. Zhou, H. M. G. Wassel, S. Liu, J. Gao, J. Mick-
ens, M. Yu, C. Kennelly, P. Turner, D. E. Culler, H. M.
Levy, and A. Vahdat. Carbink: Fault-Tolerant far mem-
ory. In 16th USENIX Symposium on Operating Systems
Design and Implementation (OSDI 22), pages 55–71,
Carlsbad, CA, July 2022. USENIX Association.

https://lwn.net/Articles/856931/
https://lwn.net/Articles/856931/

A Tail Latency of Linux-Based Applications
In this section, we evaluate Hermit using the vanilla Linux-
based Memcached as opposed to the Shenango-enhanced
Memcached (§6.2). Figure 18(a) shows 99th percentile la-
tency with fixed load (1 Mops) and varying local memory
ratios. Figure 18(b) shows latency with a fixed local mem-
ory ratio (70%) and varying load. Hermit still significantly
outperforms other baseline systems. The results show a sim-
ilar trend to the results of Shenango-enhanced Memcached.

20 40 60 80 100
Local memory (%)

0

1000

2000

3000

99
%

La
te

nc
y

(μ
s)

Linux Fastswap Hermit All local

0.5 1.0 1.5 2.0
Offered load (Mops)

(a) Under 1 Mops load. (b) Under 70% local memory.

Figure 18: For the vanilla Linux-based Memcached, Hermit still
significantly outperforms other baseline systems.

B CPU Usage of Other Applications
This section reports and compares the CPU usage of Social-
Net and Gdnsd running on Fastswap and Hermit under the
same setting as in Figure 8. Figure 19 shows the results.
Thanks to its efficient swap design, Hermit consistently uses
10%–40% fewer CPU cycles than Fastswap, even though it
invokes more reclaim threads.

C Tail Latency in Other Percentiles
This section reports the median and 99.9th percentile latency
of all three latency-critical applications. Figure 20 depicts
the results when running applications with a fixed load and
varying local memory ratios. The results exhibit a similar
trend to Figure 7. All three systems sustain low median
latency when local memory is not too scarce, while Her-
mit slightly outperforms Fastswap and Linux. When local
memory continues to decrease, applications have to spend
more CPU cycles on frequent remote memory accesses. The
CPU congestion consequently ramps up the median latency.
Thanks to the CPU-efficient swap design, Hermit’s median
latency increases slower than Fastswap, allowing applica-
tions to serve higher load, particularly when local memory
is scarce. With regards to 99.9th percentile latency, Hermit
again significantly outperforms Fastswap and Linux. It en-
ables applications to put on average 20% more working set
in remote memory without violating the tail latency agree-
ment.

Next, we repeated the experiment shown in Figure 8 by
fixing the local memory ratio to 70% and measured the me-
dian and 99.9th percentile latency of applications with vary-

ing load (see Figure 21). Hermit is able to deliver low me-
dian latency close to the ideal setup and much lower tail
latency. Since 99.9th percentile latency is more susceptible
to direct page reclamation, Fastswap experiences significant
performance degradation once its single dedicated core gets
saturated. Hermit, in contrast, is able to offer high load (>
60% compared to the ideal all-local setup) and maintain low
99.9th percentile latency under 70% local memory ratio.

0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1.0 1.1
Offered load (Mops)

0

50

100
C

PU
U

sa
ge

(%
)

Fastswap Hermit

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0 4.5 5.0 5.5 6.0 6.5 7.0
Offered load (Mops)

0

50

100

C
PU

U
sa

ge
(%

)

Fastswap Hermit

(a) SocialNet (b) Gdnsd

Figure 19: For SocialNet and Gdnsd, Hermit still saves 10%–40% CPU cycles under varying load compared with Fastswap, which is the key
enabler it can achieve low tail latency under high load.

40 50 60 70 80 90 100
Local memory (%)

0

20

40

60

80

M
ed

ia
n

La
te

nc
y

(μ
s)

40 50 60 70 80 90 100
Local memory (%)

0

40

80

120

160
Linux Fastswap Hermit All local

50 60 70 80 90 100
Local memory (%)

0

20

40

60

80

40 50 60 70 80 90 100
Local memory (%)

0

100

200

300

400

500

99
.9

%
La

te
nc

y
(μ

s)

40 50 60 70 80 90 100
Local memory (%)

0

1000

2000

3000

4000

5000

50 60 70 80 90 100
Local memory (%)

0

100

200

300

400

500

(a) Memcached (1.5 Mops) (b) SocialNet (0.75 Mops) (c) Gdnsd (4 Mops)

Figure 20: Hermit still significantly outperforms Fastswap and Linux in terms of median and 99.9% latency under the same load and varying
local memory ratio.

1 2 3 4
Offered load (Mops)

0

20

40

60

80

M
ed

ia
n

La
te

nc
y

(μ
s)

0.5 1.0 1.5
Offered load (Mops)

0

20

40

60

80
Linux Fastswap Hermit All local

2 4 6 8
Offered load (Mops)

0

20

40

60

80

1 2 3 4
Offered load (Mops)

0

500

1000

1500

99
.9

%
La

te
nc

y
(μ

s)

0.5 1.0 1.5
Offered load (Mops)

0

1000

2000

3000

2 4 6 8
Offered load (Mops)

0

500

1000

1500

(a) Memcached (b) SocialNet (c) Gdnsd

Figure 21: Hermit also achieves significantly lower median and 99.9% latency than Fastswap and Linux under 70% local memory ratio and
varying load. As we used a closed-loop load generator for SocialNet, it reaches the maximum load capacity before its median latency spikes.

	Introduction
	Background
	Understanding Existing Swap Systems
	The Life Cycle of Remote Memory Access
	Root Causes of Inefficiencies

	Hermit Design
	Design Overview
	Reclaim Scheduling
	Adapt Swap-in to Fast Remote Memory
	CPU-Efficient Page Reclamation

	Implementation
	Evaluation
	Real-world Applications
	Tail Latency of Latency-Critical Applications
	Throughput of Batch Applications
	Design Drill-Down
	Remote Memory Access Latency
	Page Reclamation Efficiency
	Effectiveness of Feedback-directed Asynchrony
	Breaking Down End-to-End Speedup
	Resource Consumption of Swap Operations

	Related Work
	Conclusion
	Tail Latency of Linux-Based Applications
	CPU Usage of Other Applications
	Tail Latency in Other Percentiles

