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ABSTRACT

Cloud computers and multicore processors are two emerging classes
of computational hardware that have the potential to provide un-
precedented compute capacity to the average user. In order for the
user to effectively harness all of this computational power, operat-
ing systems (OSes) for these new hardware platforms are needed.
Existing multicore operating systems do not scale to large num-
bers of cores, and do not support clouds. Consequently, current
day cloud systems push much complexity onto the user, requiring
the user to manage individual Virtual Machines (VMs) and deal
with many system-level concerns. In this work we describe the
mechanisms and implementation of a factored operating system
named fos. fos is a single system image operating system across
both multicore and Infrastructure as a Service (IaaS) cloud sys-
tems. fos tackles OS scalability challenges by factoring the OS
into its component system services. Each system service is further
factored into a collection of Internet-inspired servers which com-
municate via messaging. Although designed in a manner similar to
distributed Internet services, OS services instead provide traditional
kernel services such as file systems, scheduling, memory manage-
ment, and access to hardware. fos also implements new classes
of OS services like fault tolerance and demand elasticity. In this
work, we describe our working fos implementation, and provide
early performance measurements of fos for both intra-machine and
inter-machine operations.
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1. INTRODUCTION

The average computer user has an ever-increasing amount of
computational power at their fingertips. Users have progressed
from using mainframes to minicomputers to personal computers
to laptops, and most recently, to multicore and cloud computers.
In the past, new operating systems have been written for each new
class of computer hardware to facilitate resource allocation, man-
age devices, and take advantage of the hardware’s increased com-
putational capacity. The newest classes of computational hardware,
multicore and cloud computers, need new operating systems to take
advantage of the increased computational capacity and to simplify
user’s access to elastic hardware resources.

Cloud computing and Infrastructure as a Service (IaaS) promises
a vision of boundless computation which can be tailored to ex-
actly meet a user’s need, even as that need grows or shrinks rapidly.
Thus, through IaaS systems, users should be able to purchase just
the right amount of computing, memory, I/O, and storage to meet
their needs at any given time. Unfortunately, counter to the vision,
current IaaS systems do not provide the user the same experience
as if they were accessing an infinitely scalable multiprocessor com-
puter where resources such as memory, disk, cores, and I/O can all
be easily hot-swapped. Instead, current IaaS systems lack system-
wide operating systems, requiring users to explicitly manage re-
sources and machine boundaries. If cloud computing is to deliver
on its promise, the ease of using a cloud computer must match that
of a current-day multiprocessor system.

The next decade will also bring single chip microprocessors con-
taining hundreds or even thousands of computing cores. Making
operating systems scale, designing scalable internal OS data struc-
tures, and managing these growing resources will be a tremendous
challenge. Contemporary OSes designed to run on a small number
of reliable cores are not equipped to scale up to thousands of cores
or tolerate frequent errors. The challenges of designing an operat-
ing system for future multicore and manycore processors are shared
with those for designing OSes for current-day cloud computers.
The common challenges include scalability, managing elasticity of
demand, managing faults, and the challenge of large system pro-
gramming.
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Figure 1: fos provides a single system image across all the cloud nodes.

Our solution is to provide a single system image OS, making
IaaS systems as easy to use as multiprocessor systems and allow-
ing the above challenges to be addressed in the OS. In this work, we
present a factored operating system (fos) which provides a single
system image OS on multicore processors as well as cloud com-
puters. fos does this in two steps. First, fos factors system services
of a full-featured OS by service. Second, fos further factors and
parallelizes each system service into an Internet-style collection, or
fleet, of cooperating servers that are distributed among the underly-
ing cores and machines. All of the system services within fos, along
with the fleet of servers implementing each service, communicate
via message passing, which maps transparently across multicore
computer chips and across cloud computers via networking. For
efficiency, when fos runs on shared-memory multicores, the mes-
saging abstraction is implemented using shared memory. Although
fos uses the messaging abstraction internally, it does not require
applications that it hosts to use message passing for communica-
tion. Previous work [26] has introduced the multicore aspects of
fos, while this work focuses on how to build an operating system
which can service both cloud and multicore computers.

1.1 Challenges with Current Cloud Systems

Current laaS systems present a fractured and non-uniform view
of resources to the programmer. laaS systems such as Amazon’s
EC2 [1] provision resources in units of virtual machines (VM). Us-
ing virtual machines as a provisioning unit reduces the complexity
for the cloud manager, but without a suitable abstraction layer, this
division introduces complexity for the system user. The user of a
IaaS system has to worry not only about constructing their applica-
tion, but also about system concerns such as configuring and man-
aging communicating operating systems. Addressing the system
issues requires a completely new skill set than those for application
development.

For example, in order for a user to construct an application that
can take advantage of more than a single VM, the user application
needs to recognize its needs, communicate its needs to the cloud
manager, and manage the fractured communication paradigms of
intra- and inter-machine communication. For communication in-
side of a multicore VM, shared memory and pipes are used, while
sockets must be used between VMs. The fractured nature of the
current IaaS model extends beyond communication mechanisms
to scheduling and load balancing, system administration, I/O de-
vices, and fault tolerance. For system administration, the user of
an [aaS cloud system needs to manage a set of different computers.
Examples of the system administration headaches include manag-
ing user accounts within a machine versus externally via NIS or
Kerberos, managing processes between the machines (using ’ps’

and ’kill” within a machine, and a batch queue or ad-hoc mecha-
nisms between machines), and keeping configuration files and up-
dates synchronized between machines (cfengine) versus within one
machine. There is no generalized way to access remote 1/0O devices
on operating systems such as Linux. Point solutions exist for dif-
fering 1/Os, for instance NFS for disk, and VNC for display. Last,
faults are accentuated in a VM environment because the user has to
manage cases where a whole VM crashes as a separate case from a
process which has crashed.

Scheduling and load balancing differs substantially within and
between machines as well. Existing operating systems handle schedul-
ing within a machine, but the user must often build or buy server
load balancers for scheduling across machines. Cloud aggrega-
tors and middleware such as RightScale [22] and Amazon’s Cloud-
Watch Auto Scaling [1] provide automatic cloud management and
load balancing tools, but they are typically application-specific and
tuned to web application serving.

1.2 Benefits of a Single System Image

fos proposes to provide a single system image across multicores
and the cloud as shown in Figure 1. This abstraction can be built
on top of VMs which are provided by an laaS service or directly
on top of a cluster of machines. A single system image has the
following advantages over the ad-hoc approach of managing VMs
each running distinct operating system instances:

o Ease of administration. Administration of a single OS is eas-
ier than many machines. Specifically, OS update, configura-
tion, and user management are simpler.

e Transparent sharing. Devices can be transparently shared
across the cloud. Similarly, memory and disk on one phys-
ical machine can transparently be used on another physical
machine (e.g., paging across the cloud)

o [nformed optimizations. An OS has local, low-level knowl-
edge, thereby allowing it to make better, finer-grained opti-
mizations than middleware systems.

e Consistency. An OS has a consistent, global view of pro-
cess management and resource allocation. Intrinsic load bal-
ancing across the system is possible, and so is easy process
migration between machines based on load, which is chal-
lenging with middleware systems. A consistent view also
enables seamless scaling, since application throughput can
be scaled up as easily as exec’ing new processes. Similarly,
applications have a consistent communication and program-
ming model whether the application resides inside of one
machine or spans multiple physical machines. Furthermore,



debugging tools are uniform across the system, which facili-
tates debugging multi-VM applications.

e Fault tolerance. Due to global knowledge, the OS can take
corrective actions on faults.

This paper describes a working implementation of a prototype
factored operating system, and presents early performance mea-
surements of fos operations within a machine and between ma-
chines. Our fos prototype provides a single system image across
multicores and clouds, and includes a microkernel, messaging layer,
naming layer, protected memory management, a local and remote
process spawning interface, a file system server, a block device
driver server, a message proxy network server, a basic shell, a web-
server, and a network stack.

This paper is organized as follows. Section 2 details the com-
mon challenges that cloud and multicore operating systems face.
Section 3 explores the architecture of fos. Section 4 explores the
detailed implementation of fos on clouds and multicores through
some example OS operations. Section 5 measures the current fos
prototype implementation on multicore and cloud systems. Sec-
tion 6 places fos in context with previous systems. And finally we
conclude.

2. MULTICORE AND CLOUD OPERATING
SYSTEM CHALLENGES

Cloud computing infrastructure and manycore processors present
many common challenges with respect to the operating system.
This section introduces what we believe are the main problems OS
designers will need to address in the next decade. Our solution, fos,
seeks to address these challenges in a solution that is suitable for
both multicore and cloud computing.

2.1 Scalability

The number of transistors which fit onto a single chip micro-
processor is exponentially increasing [18]. In the past, new hard-
ware generations brought higher clock frequency, larger caches,
and more single stream speculation. Single stream performance of
microprocessors has fallen off the exponential trend [5]. In order
to turn increasing transistor resources into exponentially increas-
ing performance, microprocessor manufacturers have turned to in-
tegrating multiple processors onto a single die [27, 25]. Current
OSes were designed for single processor or small number of pro-
cessor systems. The current multicore revolution promises dras-
tic changes in fundamental system architecture, primarily in the
fact that the number of general-purpose schedulable processing el-
ements is drastically increasing. Therefore multicore OSes need to
embrace scalability and make it a first order design constraint. In
our previous work [26], we investigated the scalability limitations
of contemporary OS design including: locks, locality aliasing, and
reliance on shared memory.

Concurrent with the multicore revolution, cloud computing and
[aaS systems have been gaining popularity. This emerging com-
puting paradigm has a huge potential to transform the computing
industry and programming models [7]. The number of comput-
ers being added by cloud computing providers has been growing
at a vast rate, driven largely by user demand for hosted computing
platforms. The resources available to a given cloud user are much
higher than are available to the non-cloud user. Cloud resources
are virtually unlimited for a given user, only restricted by monetary
constraints. Example public clouds and IaaS services include Ama-
zon’s EC2 [1] and Rackspace’s Cloud Server [2]. Thus, it is clear

that scalability is a major concern for future OSes in both single
machine and cloud systems.

2.2 Variability of Demand

We define elasticity of resources as the aspect of a system where
the available resources can be changed dynamically over time. By
definition, manycore systems provide a large number of general-
purpose, schedulable cores. Furthermore, the load on a manycore
system translates into number of cores being used. Thus the system
must manage the number of live cores to match the demand of the
user. For example, in a 1,000-core system, the demand can require
from 1 to 1,000 cores. Therefore, multicore OSes need to manage
the number of live cores which is in contrast to single core OSes
which only have to manage whether a single core is active or idle.

In cloud systems, user demand can grow much larger than in the
past. Additionally, this demand is often not known ahead of time
by the cloud user. It is often the case that users wish to handle
peak load without over-provisioning. In contrast to cluster systems
where the number of cores is fixed, cloud computing makes more
resources available on-demand than was ever conceivable in the
past.

A major commonality between cloud computing and multicore
systems is that the demand is not static. Furthermore, the variability
of demand is much higher than in previous systems and the amount
of available resources can be varied over a much broader range in
contrast to single-core or fixed-sized cluster systems.

The desire to reach optimal power utilization forces current sys-
tem designers to match the available resources to the demand. Heat
and energy consumption impact computing infrastructure from chip
design all the way up to the cost of running a data center. As a
result, fos seeks to reduce the heat production and power consump-
tion while maintaining the throughput requirements imposed by the
user.

2.3 Faults

Managing software and hardware faults is another common chal-
lenge for future multicore and cloud systems. In multicore sys-
tems, hardware faults are becoming more common. As the hard-
ware industry is continuously decreasing the size of transistors and
increasing their count on a single chip, the chance of faults is ris-
ing. With hundreds or thousands of cores per chip, system software
components must gracefully support dying cores and bit flips. In
this regard, fault tolerance in modern OSes designed for multicore
is becoming an essential requirement.

In addition, faults in large-scale cloud systems are common. Cloud
applications usually share cloud resources with other users and ap-
plications in the cloud. Although each users’ application is encap-
sulated in a virtual container (for example, a virtual machine in an
EC2 model), performance interference from other cloud users and
applications can potentially impact the quality of service provided
to the application.

Programming for massive systems is likely to introduce software
faults. Due to the inherent difficulty of writing multithreaded and
multiprocess applications, the likelihood of software faults in those
applications is high. Furthermore, the lack of tools to debug and
analyze large software systems makes software faults hard to un-
derstand and challenging to fix. In this respect, dealing with soft-
ware faults is another common challenge that OS programming for
multicore and cloud systems share.

2.4 Programming Challenges

Contemporary OSes which execute on multiprocessor systems
have evolved from uniprocessor OSes. This evolution was achieved
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Figure 2: An overview of the fos server architecture, highlighting the cross-machine interaction between servers in a manner trans-
parent to the application. In scenario (a), the application is requesting services from ‘“fos Server a” which happens to be local to the
application. In scenario (b), the application is requesting a service which is located on another machine.

by adding locks to the OS data structures. There are many prob-
lems with locks, such as choosing correct lock granularity for per-
formance, reasoning about correctness, and deadlock prevention.
Ultimately, programming efficient large-scale lock-based OS code
is difficult and error prone. Difficulties of using locks in OSes is
discussed in more detail in [26].

Developing cloud applications composed of several components
deployed across many machines is a difficult task. The prime rea-
son for this is that current IaaS cloud systems impose an extra layer
of indirection through the use of virtual machines. Whereas on
multiprocessor systems the OS manages resources and scheduling,
on cloud systems much of this complexity is pushed into the appli-
cation by fragmenting the application’s view of the resource pool.

Furthermore, there is not a uniform programming model for com-
municating within a single multicore machine and between ma-
chines. The current programming model requires a cloud program-
mer to write a threaded application to use intra-machine resources
while socket programming is used to communicate with compo-
nents of the application executing on different machines.

In addition to the difficulty of programming these large-scale hi-
erarchical systems, managing and load-balancing these systems is
proving to be a daunting task as well. Ad-hoc solutions such as
hardware load-balancers have been employed in the past to solve
such issues. These solutions are often limited to a single level of
the hierarchy (at the VM level). In the context of fos, however, this
load balancing can be done inside the system, in a generic manner
(i.e. one that works on all messaging instead of only TCP/IP traffic)
and on a finer granularity than at the VM or single machine level.
Furthermore, with our design, the application developer need not
be aware of such load balancing.

Scalability, elasticity of demand, faults, and difficulty in pro-
gramming large systems are common issues for emerging multicore
and cloud systems.

3. ARCHITECTURE

fos is an operating system which takes scalability and adaptabil-
ity as the first order design constraints. Unlike most previous OSes
where a subsystem scales up to a given point, beyond which the
subsystem must be redesigned, fos ventures to develop techniques
and paradigms for OS services which scale from a few to thou-
sands of cores. In order to achieve the goal of scaling over multiple

orders of magnitude in core count, fos uses the following design
principles:

e Space multiplexing replaces time multiplexing. Due to the
growing bounty of cores, there will soon be a time where the
number of cores in the system exceeds the number of active
processes. At this point scheduling becomes a layout prob-
lem, not a time-multiplexing problem. The operating system
will run on distinct cores from the application. This gives
spatially partitioned working sets; the OS does not interfere
with the application’s cache.

e OS is factored into function-specific services, where each is
implemented as a parallel, distributed service. In fos, ser-
vices collaborate and communicate only via messages, al-
though applications can use shared memory if it is supported.
Services are bound to a core, improving cache locality. Through
a library layer, libfos, applications communicate to services
via messages. Services themselves leverage ideas from col-
laborating Internet servers.

o OS adapts resource utilization to changing system needs. The
utilization of active services is measured, and highly loaded
services are provisioned more cores (or other resources). The
OS closely manages how resources are used.

o Faults are detected and handled by OS. OS services are mon-
itored by watchdog process. If a service fails, a new instance
is spawned to meet demand, and the naming service reas-
signs communication channels.

The following sections highlight key aspects of the fos architec-
ture, shown in Figure 2. fos runs across multiple physical machines
in the cloud. In the figure, fos runs on an IaaS system on top of a hy-
pervisor. A small microkernel runs on every core, providing mes-
saging between applications and servers. The global name mapping
is maintained by a distributed set of proxy-network servers that also
handle inter-machine messaging. A small portion of this global
namespace is cached on-demand by each microkernel. Applica-
tions communicate with services through a library layer (libfos),
which abstracts messaging and interfaces with system services.



3.1 Microkernel

fos is a microkernel operating system. The fos microkernel exe-
cutes on every core in the system. fos uses a minimal microkernel
OS design where the microkernel only provides a protected mes-
saging layer, a name cache to accelerate message delivery, basic
time multiplexing of cores, and an Application Programming Inter-
face (API) to allow the modification of address spaces and thread
creation. All other OS functionality and applications execute in
user space. OS system services execute as userland processes, but
may possess capabilities to communicate with other system ser-
vices which user processes do not.

Capabilities are extensively used to restrict access into the pro-
tected microkernel. The memory modification API is designed to
allow a process on one core to modify the memory and address
space on another core if appropriate capabilities are held. This ap-
proach allows fos to move significant memory management and
scheduling logic into userland space.

3.2 Messaging

One operating system construct that is necessary for any mul-
ticore or cloud operating system is a form of inter-process com-
munication and synchronization. fos solves this need by providing
a simple process-to-process messaging API. There are several key
advantages to using messaging for this mechanism. One advan-
tage is the fact that messaging can be implemented on top of shared
memory, or provided by hardware, thus allowing this mechanism to
be used for a variety of architectures. Another advantage is that the
sharing of data becomes much more explicit in the programming
model, thus allowing the programmer to think more carefully about
the amount of shared data between communicating processes. By
reducing this communication, we achieve better encapsulation as
well as scalability, both desirable traits for a scalable cloud or mul-
ticore operating system.

It bears noting that fos allows conventional multithreaded appli-
cations with shared memory. This is in order to support legacy code
as well as a variety of programming models. However, operating
system services are implemented strictly using messages. This is
done to force careful thought about which data are shared to im-
prove scalability.

Using messaging is also beneficial in that the abstraction works
across several different layers without concern from the applica-
tion developer. To be more concrete, when one process wishes to
communicate with another process it uses the same mechanism for
this communication regardless of whether the second process is on
the same machine or not. Existing solutions typically use a hi-
erarchical organization where intra-machine communication uses
one mechanism while inter-machine communication uses another,
often forcing the application developer to choose a-priori how they
will organize their application around this hierarchy. By abstracting
this communication mechanism, fos applications can simply focus
on the application and communication patterns on a flat communi-
cation medium, allowing the operating system to decide whether or
not the two processes should live on the same VM or not. Addition-
ally, existing software systems which rely on shared memory are
also relying on the consistency model and performance provided
by the underlying hardware.

fos messaging works intra-machine and across the cloud, but
uses differing transport mechanisms to provide the same interface.
On a shared memory multicore processor, fos uses message pass-
ing over shared memory. When messages are sent across the cloud,
messages are sent via shared memory to the local proxy server
which then uses the network (e.g., Ethernet) to communicate with

a remote proxy server which then delivers the message via shared
memory on the remote node.

Each process has a number of mailboxes that other processes
may deliver messages to provided they have the credentials. fos
presents an API that allows the application to manipulate these
mailboxes and their properties. An application starts by creating
a mailbox. Once the mailbox has been created, capabilities are
created which consist of keys that may be given to other servers
allowing them to write to the mailbox.

In addition to mailbox creation and access control, processes
within fos are also able to register a mailbox under a given name.
Other processes can then communicate with this process by send-
ing a message to that name and providing the proper capability. The
fos microkernel and proxy server assume the responsibility of rout-
ing and delivering messages regardless of whether or not a message
crosses machine boundaries.

3.3 Naming

One unique approach to the organization of multiple communi-
cating processes that fos takes is the use of a naming and lookup
scheme. As mentioned briefly in the section on messaging, pro-
cesses are able to register a particular name for a mailbox. This
namespace is a hierarchical URI much like a web address or file-
name. This abstraction provides great flexibility in load balancing
and locality to the operating system.

The basic organization for many of fos’s servers is to divide the
service into several independent processes (running on different
cores) all capable of handling the given request. As a result, when
an application messages a particular service, the nameserver will
provide a member of the fleet that is best suited for handling the
request. To accomplish this, all of the servers within the fleet reg-
ister under a given name. When a message is sent, the nameserver
will provide the server that is optimal based on the load of all of the
servers as well as the latency between the requesting process and
each server within the fleet.

While much of the naming system is in a preliminary stage, we
have various avenues to explore for the naming system. When mul-
tiple servers want to provide the same service, they can share a
name. We are investigating policies for determining the correct
server to route the message to. One solution is to have a few fixed
policies such as round robin or closest server. Alternatively, cus-
tom policies could be set via a callback mechanism or complex
load balancer. Meta-data such as message queue lengths can be
used to determine the best server to send a message to.

As much of the system relies on this naming mechanism, the
question of how to optimally build the nameserver and manage
caching associated with it is also a challenging research area that
will be explored. This service must be extremely low latency while
still maintaining a consistent and global view of the namespace. In
addition to servers joining and leaving fleets on the fly, thus requir-
ing continual updates to the name-lookup, servers will also be mi-
grating between machines, requiring the nameserver (and thus rout-
ing information) to be updated on the fly as well. The advantage
to this design is that much of the complexity dealing with separate
forms of inter-process communication in traditional cloud solutions
is abstracted behind the naming and messaging API. Each process
simply needs to know the name of the other processes it wishes
to communicate with, fos assumes the responsibility of efficiently
delivering the message to the best suited server within the fleet
providing the given service. While a preliminary flooding based
implementation of the namserver is currently being used, the long
term solution will incorporate ideas from P2P networking like dis-
tributed hash tables as in Chord [23] and Coral [13].



3.4 OS Services

A primary challenge in both cloud computing and multicore is
the unprecedented scale of demand on resources, as well as the
extreme variability in the demand. System services must be both
scalable and elastic, or dynamically adaptable to changing demand.
This requires resources to shift between different system services
as load changes.

fos addresses these challenges by parallelizing each system ser-
vice into a fleet of spatially-distributed, cooperating servers. Each
service is implemented as a set of processes that, in aggregate, pro-
vide a particular service. Fleet members can execute on separate
machines as well as separate cores within a machine. This improves
scalability as more processes are available for a given service and
improves performance by exploiting locality. Fleets communicate
internally via messages to coordinate state and balance load. There
are multiple fleets active in the system: e.g., a file system fleet, a
naming fleet, a scheduling fleet, a paging fleet, a process manage-
ment fleet, et cetera.

Assuming a scalable implementation, the fleet model is elastic
as well. When demand for a service outstrips its capabilities, new
members of the fleet are added to meet demand. This is done by
starting a new process and having it handshake with existing mem-
bers of the fleet. In some cases, clients assigned to a particular
server may be reassigned when a new server joins a fleet. This
can reduce communication overheads or lower demand on local re-
sources (e.g., disk or memory bandwidth). Similarly, when demand
is low, processes can be eliminated from the fleet and resources re-
turned to the system. This can be triggered by the fleet itself or an
external watchdog service that manages the size of the fleet. A key
research question is what are the best policies for growing, shrink-
ing, and layout (scheduling) of fleets.

Fleets are an elegant solution to scalability and elasticity, but are
complicated to program compared to straight-line code. Further-
more, each service may employ different parallelization strategies
and have different constraints. fos addresses this by providing (i)
a cooperative multithreaded programming model; (ii) easy-to-use
remote procedure call (RPC) and serialization facilities; and (iii)
data structures for common patterns of data sharing.

3.4.1 fos Server Model

fos provides a server model with cooperative multithreading and
RPC semantics. The goal of the model is to abstract calls to inde-
pendent, parallel servers to make them appear as local libraries, and
to mitigate the complexities of parallel programming. The model
provides two important conveniences: the server programmer can
write simple straight-line code to handle messages, and the inter-
face to the server is simple function calls.

Servers are event-driven programs, where the events are mes-
sages. Messages arrive on one of three inbound mailboxes: the
external (public) mailbox, the internal (fleet) mailbox, and the re-
sponse mailbox for pending requests. To avoid deadlock, messages
are serviced in reverse priority of the above list.

New requests arrive on the external mailbox. The thread that
receives the message is now associated with the request and will
not execute any other code. The request may require communica-
tion with other servers (fleet members or other services) to be com-
pleted. Meanwhile, the server must continue to service pending
requests or new requests. The request is processed until comple-
tion or a RPC to another service occurs. In the former case, the
thread terminates. In the latter, the thread yields to the cooperative
scheduler, which spawns a new thread to wait for new messages to
arrive.

Requests internal to the fleet arrive on the internal mailbox. These

deal with maintaining data consistency within the fleet, load bal-
ancing, or growing/shrinking of the fleet as discussed above. Other-
wise, they are handled identically to requests on the external mail-
box. They are kept separate to prevent others from spoofing internal
messages and compromising the internal state of the server.

Requests on the response mailbox deal with pending requests.
Upon the receipt of such a message, the thread that initiated the
associated request is resumed.

The interface to the server is a simple function call. The desired
interface is specified by the programmer in a header file, and code is
generated to serialize these parameters into a message to the server.
Likewise, on the receiving end, code is generated to deserialize the
parameters and pass them to the implementation of the routine that
runs in the server. On the “caller” side, the thread that initiates
the call yields to the cooperate scheduler. When a response arrives
from the server, the cooperative scheduler will resume the thread.

This model allows the programmer to write straight-line code to
handle external requests. There is no need to generate complex
state machines or split code upon interaction with other servers,
as the threading library abstracts away the messaging. However,
this model doesn’t eliminate all the complexities of parallel pro-
gramming. Because other code will execute on the server during
an RPC, locking is still at times required, and the threading library
provides mechanisms for this.

The cooperative scheduler runs whenever a thread yields. If there
are threads ready to run (e.g., from locking), then they are sched-
uled. If no thread is ready, then a new thread is spawned that waits
on messages. If threads are sleeping for too long, then they are
resumed with a time out error status.

The model is implemented as a user-space threading library writ-
ten in C and a C-code generation tool written in python. The code
generator uses standard C header files with a few custom prepro-
cessor macros. Unlike some similar systems, there is no custom
language. The server writer is responsible only for correctly im-
plementing the body of each declared function and providing any
special serialization/deserialization routines, if necessary.

3.4.2 Parallel Data Structures

One key aspect to parallelizing operating system services is man-
aging state associated with a particular service amongst the mem-
bers of the fleet. As each service is quite different in terms of re-
source and performance needs as well as the nature of requests,
several approaches are required. While any given fleet may choose
to share state internally using custom mechanisms, a few general
approaches will be provided for the common case.

The idea is to provide a common container interface, which ab-
stracts several implementations that provide different consistency,
replication, and performance properties. In this solution, the oper-
ating system and support libraries provide an interface for storing
and retrieving data. On the back-end, each particular server stores
some of the data (acting as a cache) and communicates with other
members of the fleet to access state information not homed locally.
There are existing solutions to this problem in the P2P community
[23, 13] that we plan to explore that will leverage locality informa-
tion. Special care needs to be taken to handle joining and removing
servers from a fleet. By using a library provided by the operating
system and support libraries, the code to manage this distributed
state can be tested and optimized, alleviating the application de-
veloper from concerning themselves with the implementation of
distributed data structures. So long as the developer understands
the consistency properties of the data structures provided, this will
greatly simplify application development.

There are several solutions for managing shared and distributed



state information. The important aspect of this design is that com-
putation is decoupled from the data, allowing the members of a fleet
to be replicated on the fly to manage changing load.

4. CASE STUDIES

This section presents detailed examples of key components of
fos. It both illustrates how fos works and demonstrates how fos
solves key challenges in the cloud.

4.1 File System

An example of the interaction between the different servers in fos
is the fos file server. Figure 3 depicts an anatomy of a file system
access in fos. In this figure, the application client, the fos file sys-
tem server and the block device driver server are all executing on
distinct cores to diminish the cache and performance interferences
among themselves. Since the communication between the appli-
cation client and systems servers, and amongst the system servers,
is via the fos messaging infrastructure, proper authentication and
credential verification for each operation is performed by the mes-
saging layer in the microkernel. This example assumes all services
are on the same machine, however the multi-machine case is a log-
ical extension to this example, with a proxy server bridging the
messaging abstraction between the two machines.

fos intercepts the POSIX file system calls in order to support
compatibility with legacy POSIX applications. It bundles the POSIX
calls into a message and sends it to the file system server. The mi-
crokernel determines the destination server of the message and ver-
ifies that the client application possesses the requisite capabilities
to communicate with the server. It, then looks up the destination
server in its name cache and determines which core it is executing
on. If the server is a local server (i.e. executing on the same ma-
chine as the application), the microkernel forwards the message to
the destination application. In Figure 3, fos intercepts the applica-
tion File system access in step 1, bundles it in a message in step 2
to be sent via the messaging layer. Since the destination server for
this message is the file system server, fos queries the name cache
and sends the message to the destination core in step 3.

Once the file system server receives a new message in its incom-
ing mailbox queue, it services the request. If the data requested by
the application is cached, the server bundles it into a message and
sends it back to the requesting application. Otherwise, it fetches the
needed sectors from disk through the block device driver server. In
the file system anatomy figure, step 5 represents the bundling of
the sectors request into block messages while step 6 represents the
look-up of the block device driver in the name cache. Once the
server is located, the fos microkernel places the message in the in-
coming mailbox queue of the block device driver server as shown
in step 6.

The block device driver server provides Disk I/O operations and
access to the physical disk. In response to the incoming message,
the block device driver server processes the request enclosed in the
incoming message, fetches the sectors from disk as portrayed in
steps 7, 8 and 9 respectively in the figure. Afterward, it encap-
sulates the fetched sectors in a message and sends it back to the
file system server, as shown in steps 10, 11 and 12. In turn, the
file server processes the acquired sectors from the incoming mail-
box queue, encapsulates the required data into messages and sends
them back to the client application. In the client application, libfos
receives the data at its incoming mailbox queue and processes it in
order to provide the file system access requested by the client ap-
plication. These steps are all represented by steps 13 through 15 in
the file system access anatomy in Figure 3.

Libfos provides several functions, including compatibility with
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Figure 4: Spawning a VM

POSIX interfaces. The user application can either send the file sys-
tem requests directly through the fos messaging layer or through
libfos. In addition, if the file system server is not running on the lo-
cal machine (i.e. the name cache could not locate it), the message is
forwarded to the proxy server. The proxy server has the name cache
and location of all the remote servers. In turn, it determines the ap-
propriate destination machine for the message, bundles it into a net-
work message and sends it via the network stack to the designated
machine. Although this adds an extra hop through the proxy server,
it provides the system with transparency when accessing local or re-
mote servers. In a cloud environment, the uniform messaging and
naming allows servers to be assigned to any machine in the system
thereby providing a single system image, instead of the fragmented
view of the cloud resources. It also provides a uniform applica-
tion programming model to use inter-machine and intra-machine
resources in the cloud.

4.2 Spawning Servers

To expand a fleet by adding a new server, one must first spawn
the new server process. As shown in Figure 4, spawning a new pro-
cess proceeds much like in a traditional operating system, except in
fos, this action needs to take into account the machine on which
the process should be spawned. Spawning begins with a call to the
spawnProcess() function; this arises through an intercepted ‘exec’
syscall from our POSIX compatibility layer, or by directly calling
the spawnProcess function by a fos-aware application. By directly
calling the spawnProcess function, parent processes can exercise
greater control over where their children are placed by specifying
constraints on what machine to run on, what kinds of resources the
child will need, and locality hints to the scheduler.

The spawnProcess function bundles the spawn arguments into
a message, and sends that message to the spawn server’s incom-
ing request mailbox. The spawn server must first determine which
machine is most suitable for hosting that process. It makes this de-
cision by considering the available load and resources of running
machines, as well as the constraints given by the parent process in
the spawnProcess call. The spawn server interacts with the sched-
uler to determine the best machine and core for the new process to
start on. If the best machine for the process is the local machine,
the spawn server sets up the address space for the new process and
starts it. The spawn server then returns the PID to the process that
called spawnProcess by responding with a message. If the sched-
uler determined that spawning on a remote machine is best, the
spawn server forwards the spawn request to the spawn server on
the remote machine, which then spawns the process.

If the local spawn server was unable to locate a suitable ma-
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chine to spawn the process, it will initiate the procedure of spawn-
ing a new VM. To do this, it sends a message to the cloud interface
server, describing what resources the new machine should have;
when the cloud interface server receives this message, it picks the
best type of VM to ask for. The cloud interface server then spawns
the new VM by sending a request to the cloud manager via Internet
requests (the server outside of fos which is integrated into the un-
derlying cloud infrastructure eg. EC2). When the cloud manager
returns the VM 1D, the cloud interface server waits until the new
VM acquires an IP address. At this point, the cloud interface server
begins integration of the new VM into the fos single system image.

The newly-booted VM starts in a bare state, waiting for the spawner

VM to contact it. The cloud interface server notifies the local proxy
server that there is a new VM at the given IP address that should
be integrated into the system, and the proxy server then connects to
the remote proxy server at that IP and initiates the proxy bootstrap
process. During the bootstrap process, the proxy servers exchange
current name mappings, and notify the rest of the machines that
there is a new machine joining the system. When the local proxy
server finishes this setup, it responds to the cloud interface server
that the VM is fully integrated. The cloud interface server can then
respond to the local spawn server to inform it that there is a new
machine that is available to spawn new jobs, which then tells all
the spawn servers in the fleet that there is a new spawn server and
a new machine available. The local spawn server finally forwards
the original spawn call to the remote spawn server on the new VM.

In order to smooth the process of creating new VMs, the spawn-
ing service uses a pair of high- and low-water-marks, instead of
spawning only when necessary. This allows the spawning service
to mask VM startup time by preemptively spawning a new VM
when the resources are low but not completely depleted. It also
prevents the ping-ponging effect, where new VMs are spawned and
destroyed unnecessarily when the load is near the new-VM thresh-

old, and gives the spawn servers more time to communicate with
each other and decide whether a new VM needs to be spawned.

4.3 Elastic Fleet

As key aspects of the design of fos include scalability and adapt-
ability, this section serves to describe how a fleet grows to match
demand. If, while the system is running, the load changes, then
the system should respond in a way that meets that demand if at all
possible. In the context of a fos fleet, if the load become too high
for the fleet to handle requests at the desirable rate, then a watchdog
process for the fleet can grow the fleet. The watchdog does this by
spawning a new member of the fleet and initiating the handshak-
ing process that allows the new server to join the fleet. During the
handshaking process, existing members of the fleet are notified of
the new member, and state is shared with the new fleet member.
Additionally, the scheduler may choose to spatially re-organize the
fleet so as to reduce the latency between fleet members and those
processes that the fleet is servicing.

As a concrete example, if there are many servers on a single ma-
chine that are all requesting service look-ups from the nameserver,
the watchdog process may notice that all of the queues are becom-
ing full on each of the nameservers. It may then decide to spawn a
new nameserver and allow the scheduler to determine which core
to put this nameserver on so as to alleviate the higher load.

While similar solutions exist in various forms for existing laaS
solutions, the goal of fos is to provide the programming model,
libraries and runtime system that can make this operation transpar-
ent. By using the programming model provided for OS services as
well as the parallel data structures for backing state, many servers
can easily enjoy the benefit of being dynamically scalable to match
demand.

While the mechanism for growing the fleet will be generic, there
are several aspects of this particular procedure that will be service
specific. One issue that arises is obtaining the meta-data required to



make this decision and choosing the policy over that meta-data to
define the decision boundary. To solve this issue, the actual policy
can be provided by members of the fleet.

The fact that this decision is made by part of the operating sys-
tem is a unique and advantageous difference fos has over existing
solutions. In particular, the fleet expansion (and shrinking) can be
a global decision based on the health and resources available in a
global sense, taking into consideration the existing servers, their
load and location (latency) as well as desired throughput or mon-
etary concerns from the system owner. By taking all of this in-
formation into consideration when making the scaling scheduling
decision, fos can make a much more informed decision than solu-
tions that simply look at the cloud application at the granularity of
VMs.

S. RESULTS AND IMPLEMENTATION

fos has been implemented as a Xen para-virtualized machine
(PVM) OS. We decided to implement fos as a PVM OS in order
to support the cloud computing goals of this project, as this allows
fos to run on the EC2 and Eucalyptus cloud infrastructure [20].
It also simplifies the driver model, as the Xen PVM interface ab-
stracts away many of the details of particular hardware. fos and
its underlying design do not require a hypervisor, but our initial
implementation uses a hypervisor out of convenience.

fos is currently a preemptive multitasking multiprocessor OS ex-
ecuting on real x86_64 hardware. We have a working microkernel,
messaging layer, naming layer, protected memory management, a
spawning interface, a basic system server, a file system server sup-
porting exz2, a block device driver server, a message proxy server
and a full network stack via IwIP [12]. Furthermore, we have a
multi-machine cloud interface server which interacts with Euca-
lyptus to spawn new VMs on our testbed cluster. In addition, we
have developed several applications for fos as a proof-of-concept,
including a basic shell and a web server. We are now expanding our
collection of system servers and optimizing system performance.

Our testbed cluster contains 16 machines. Each machine has
two Intel Xeon X5460 processors (8 cores) running at 3.16GHz
and 8GB of main memory. The machines are interconnected via
two 1 Gbps Ethernet ports which are bonded.

In this section, we present preliminary results that have been
gathered from our system. A key component of our current work is
performance optimizations to make fos competitive with Linux in
these basic metrics as well as in the cloud.

5.1 System Calls

This section explores the performance of null system calls, a ba-
sic metric of operating system overhead and performance.

5.1.1 Local

In a traditional monolithic kernel, system calls are handled on
a local core through trap-and-enter. In contrast, fos distributes OS
services across independent cores which are accessed via message
passing. For this reason, it is useful to compare Linux system call
latency with fos message passing latency.

We compared the latency of a null Linux system call to the la-
tency of a null fos system call. The null fos system call is imple-
mented as a message request and response between two fos pro-
cesses. Timing was gathered by using the hardware time stamp
counter (TSC) and this test compares 64-bit DomU Linux vs 64-bit
DomU fos. In the fos case, communication is between different
cores residing in a single machine. Table 1 presents the costs of lo-
cal system calls on the two systems. fos’s system call performance

| fos | Linux

min 11058 | 1321
avg 11892 | 1328
max 28700 | 9985
stddev | 513.1 | 122.8

Table 1: local syscall time — intra-machine echo (in cycles)

fos Linux

min | 0.232 | 0.199
avg 0.353 | 0.274
max | 0.548 | 0.395
stddev | 0.028 | 0.0491

Table 2: remote syscall time — inter-machine echo (in ms)

is currently slower than Linux’s, but we are actively improving the
performance.

To improve messaging and system call performance, we are in-
vestigating a User-Level Remote Procedure Call (URPC) [9]-based
messaging transport. Initial results are promising, as we see a base
round-trip messaging cost on the order of 1500 cycles. We are still
integrating URPC into the the fos messaging layer, but these initial
results lead us to believe that we can significantly reduce the cost
of a fos message and system call.

5.1.2 Remote

Inter-machine, remote system calls consist mainly of a roundtrip
communication between two machines. Table 2 shows the results
of a remote system call between two processes residing in different
VMs on different machines. This benchmark exercises the com-
munication path that a message takes when transiting from one fos
userland application to another across machines, as shown in Fig-
ure 2. For a fos message to be delivered across machines, the mes-
sage must pass through the following servers in order: sender ap-
plication, proxy, network stack, network interface, (over the wire),
network interface, network stack, proxy server, and the recipient
application. Likewise, these servers are visited in reverse for the
response.

We are working to optimize inter-machine communication cost.
We believe that optimizing our network stack, along with optimiz-
ing the native, intra-machine, messaging layer will increase perfor-
mance as fos matures. However a large portion of the inter-machine
messaging cost will continue to be network cost, therefore we be-
lieve that the co-location of communicating processes will be cru-
cial for high performance systems in the cloud.

It is also important to note that the path that data takes in this
benchmark is serialized though the different fos servers. This natu-
rally forms a pipeline and we found that multiple messages can be
in-flight, thereby increasing messaging throughput, without affect-
ing message latency.

For comparison, we collected results on a similar echo bench-
mark, using network socket connections between a pair of Linux
systems.

5.2 Ping Response

To measure the performance of fos’s network stack, we mea-
sured the ‘ping’ response time of fos and compared it to Linux.
Responding to a ping measures the overhead of data transiting the
virtualized network interface, network stack and then back out of
the network interface without involving any applications. Table 3
presents the cost of pinging fos and Linux using the same test setup.



| fos | Linux

min 0.029 | 0.017

avg 0.031 | 0.032

max | 0.059 | 0.064

mdev | 0.008 | 0.009

Table 3: ping response (in ms)

Local | Remote

min 0.977 1.615
avg 1.549 4.070
max 10.356 | 13.337
std. dev. | 1.881 4.601

Table 4: fos process creation time in ms.

This data was gathered by spawning fos as a new DomU VM and
then pinging it from the same physical machine, but with a differ-
ent VM. By doing so we removed the network latency. The average
ping response time for fos is on the order of existing solutions. The
current fos implementation uses a single fos server for the network
interface and a single fos server for the network stack. In the future
we plan to factor the network stack into a server fleet, where each
server within the fleet will be responsible for a subset of the total
number of flows in the system.

For this benchmark, we compare pings times against Linux run-
ning in a DomU VM with the same setup.

5.3 Process Creation

fos contains a fleet of spawning servers. The spawning server
fleet is used to create processes both locally (same machine) and
remotely (different machine). Table 4 shows the process creation
time for each case. Time is measured from sending the request to
the spawn server to receipt of the response. The spawn server does
not wait for the process to complete or be scheduled; it responds
immediately after enqueueing the new process at the scheduler. The
data in Table 4 was collected over fifty spawns of a dummy appli-
cation. Creating a process on a remote machine involves additional
messages within the spawn fleet to forward the request, as well as
inter-machine network overhead. Therefore remote spawns are ap-
proximately 2.6 as expensive as local spawns.

5.4 File System

fos provides an exz2 file system implementation. As seen in Fig-
ure 3, the file system is implemented via the file system server
(FSS) and a separate block device driver server (BDDS). The FFS
responds to file system requests, which are packaged in fos mes-
sages. The FFS then communicates with the BDDS, which pro-
vides an interface with the Xen paravirtualized block device. The
BDDS is implemented as a Xen paravirtualized front-end block de-
vice driver and interacts with the Xen back-end block device in
Dom0.

We compare the cost of file system access on fos to Linux. This
benchmark measures the impact of the fos messaging layer and
the fos file system implementation. This test uses the default Xen
block device driver sector size of 512 bytes and fos uses a file sys-
tem block size of 1024 bytes. We compare against accesses to
an ext2 file system executing in a paravirtualized DomU with a
Linux 2.6.27 OS kernel. In Figure 5 we show results measuring
the performance of file system accesses with and without caching
across reads and writes of multiple file sizes. On Linux, we used
the O_DIRECT flag to enable and disable caching for ext2 Linux.

FOS vs Linux DomU fos

file system Read and Write Linux DomU
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Caching ¥

Write 1KB with no —
Caching -

Read 64KB with no —
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Caching "

Write 1IKB with =
Caching —

Read 64KB with —_—
Caching b
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Y 10 \l \000 \0000 \00000

Total Time in microseconds

Figure 5: Overall latency experienced by the fos and Linux
DomU exz2 file systems in reading and writing files of varying
sizes from the file system.

fos Linux

min | 0.173 | 0.174
avg 0.178 | 0.180
max | 0.183 | 0.183
stddev | 0.002 | 0.002

Table 5: Web server request time (ms)

This experiment, uses a test application which reads and writes a
file on the file system in 1KB chunks, and calculate the median of
20 runs. We collected the performance for two file sizes: 1KB and
64KB. In Figure 5, the x-axis represents the total time taken to read
or write the file while the y-axis describes the file system operation
performed. For each operation, we report on the median fos total
time (top bar) and the median of Linux DomU total time (bottom
bar). The upper four data sets present reading and writing without
file system caching, while the lower four data sets present reading
and writing with file caching enabled.

fos’s performance results experience higher variability than Linux,
which might be caused by the variable latency of messaging be-
tween servers. We are working on performance tuning the file sys-
tem server and extending it to a parallel file system which leverages
the power of the cloud.

5.5 Web Server

The fos web server is a prototypical example of a fos application.
The web server listens on port 80 for incoming requests; when it
receives a request, it serves a fixed static page. It fetches this page
by requesting it directly from the block device; neither the web
server nor the BDDS cache the page.

Table 5 presents the fos web server being tested with Apache-
Bench [3]. We ran 10000 non-concurrent requests with keep-alive
disabled, and measured the average response time. We ran this
test 25 times, and found the minimum, average, maximum, and
standard deviation of these average response times.

We wrote a similar webserver for Linux, and ran this http server



in a DomU Linux instance in the same setup, and used ApacheBench
to find response times in the same way.

5.6 Single System Image Growth

We used the fos proxy server and cloud interface server to ex-
tend an already running fos OS instance. For this test, we used
Eucalyptus on our cluster as the cloud manager. The fos cloud in-
terface server used the EC2 REST API to communicate with the
Eucalyptus cloud manager over the network. In this test, a fos VM
was manually started, which then started a second fos instance via
Eucalyptus. The proxy servers on the two VMs then connected and
shared state, providing a single system image by allowing fos na-
tive messages to occur over the network. The amount of time it
took for the first VM to spawn and integrate the second VM was
72.45 seconds.

This time entails many steps outside of the control of fos, includ-
ing response time of the Eucalyptus cloud controller, time to setup
the VM on a different machine with a 2GB disk file, time for the
second fos VM to receive an IP address via DHCP, and the round
trip time of the TCP messages sent by the proxy servers when shar-
ing state. For a point of reference, in [20, 19], the Eucalyptus team
found that it takes approximately 24 seconds to start up a VM using
Eucalyptus, but this is using a very different machine and network
setup, making these numbers difficult to compare. As future re-
search, we are interested in reducing the time it takes to shrink and
grow multi-VM fos single system image OSes by reducing many of
the outside system effects. In addition, we believe that by keeping
a pool of hot-spare fos servers, we can significantly reduce the time
it takes to grow and shrink a fos cloud.

6. RELATED WORK

There are several classes of systems which have similarities to
fos: traditional microkernels, distributed OSes, and cloud comput-
ing infrastructure.

Traditional microkernels include Mach [4] and L4 [16]. fos is de-
signed as a microkernel and extends the microkernel design ideas.
However, it is differentiated from previous microkernels in that in-
stead of simply exploiting parallelism between servers which pro-
vide different functions, this work seeks to distribute and parallelize
within a server for a single high-level function. fos also exploits the
“spatialness” of massively multicore processors by spatially dis-
tributing servers which provide a common OS function.

Like Tornado [14] and K42 [6], fos explores how to parallelize
microkernel-based OS data structures. They are differentiated from
fos in that they require SMP and NUMA shared memory machines
instead of loosely coupled single-chip massively multicore machines
and clouds of multicores. Also, fos targets a much larger scale of
machine than Tornado/K42. The recent Corey [10] OS shares the
spatial awareness aspect of fos, but does not address paralleliza-
tion within a system server and focuses on smaller configuration
systems. Also, fos is tackling many of the same problems as Bar-
relfish [8] but fos is focusing more on how to parallelize the system
servers as well as addresses the scalability on chip and in the cloud.

fos bears much similarity to distributed OSes such as Amoeba [24],

Sprite [21], and Clouds [11]. One major difference is that fos com-
munication costs are much lower when executing on a single mas-
sive multicore, and the communication reliability is much higher.
Also, when fos is executing on the cloud, the trust model and fault
model is different than previous distributed OSes where much of
the computation took place on student’s desktop machines.

fos differs from existing cloud computing solutions in several
aspects. Cloud ({aaS) systems, such as Amazon’s Elastic compute
cloud (EC2) [1], provide computing resources in the form of vir-

tual machine (VM) instances and Linux kernel images. fos builds
on top of these virtual machines to provide a single system im-
age across an laaS system. With the traditional VM approach,
applications have poor control over the co-location of the com-
municating applications/VMs. Furthermore, [aaS systems do not
provide a uniform programming model for communication or al-
location of resources. Cloud aggregators such as RightScale [22]
provide automatic cloud management and load balancing tools, but
they are application-specific, whereas fos provides these features
in an application agnostic manner. Platform as a service (PaasS)
systems, such as Google AppEngine [15] and MS Azure [17], rep-
resent another cloud layer which provides APIs that applications
can be developed on. PaaS systems often provide automatic scale
up/down and fault-tolerance as features, but are typically language-
specific. fos tries to provide all these benefits in an application- and
language- agnostic manner.

7. CONCLUSION

Cloud computing and multicores have created new classes of
platforms for application development; however, they come with
many challenges as well. New issues arise with the fractured re-
source pools in clouds. Also new OSes need to deal with with a
dynamic underlying computing infrastructure due to varying ap-
plication demand, faults, or energy constraints. Our system, fos,
seeks to surmount these issues by presenting a single system inter-
face to the user and by providing a programming model that allows
OS system services to scale with demand. By placing key mecha-
nisms for multicore and cloud management in a unified operating
system, resource management and optimization can occur with a
global view and at the granularity of processes instead of VMs. fos
is scalable and adaptive, thereby allowing the application developer
to focus on application-level problem-solving without distractions
from the underlying system infrastructure.
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