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● 300,000x increase in 
compute over 5 years

● Improvements in GPUs 
(and TPUs) have only 
partially closed this 
gap
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Trend: DNN model complexity is increasing over time

Training cost of state-of-the-art DNN models over time



● Example: Facebook is using 256+ GPUs to train its DNN models

● Example: Google offers a 512-core pod slice (~2 Million $ per year)

● Hard problem: How to scale DNN training?
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Requirement: Increasingly large training clusters

Google’s Cloud TPU v3 Pod
Source: https://cloud.google.com/tpu



● Weak scaling (data parallelism + larger batches)
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Conventional approach: Scale batch size with cluster

The batch size grows larger & larger

……

Some benefits
● Increases throughput (samples 

/ sec) & keeps utilization high
● Amortizes communication cost

BUT too large batches 
reduce the statistical 
efficiency of samples
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● Strong scaling (distribute samples to many GPUs)
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Alternative: scale by reducing # samples per GPU
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● Speed up by reducing iteration time

è Leads to GPU underutilization
(Must sacrifice efficiency for the best speedup)

Must waste GPUs for 
best speedup 



● GPUs are wasted for unscalable layers
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Opportunity 1: Unevenness in Scalability
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● Large GPU cluster has many users and tasks
● Two kinds of training tasks exist in large GPU cluster
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Opportunity 2: Existence of Small Jobs

Large scale jobs Small scale jobs

• Ex) Training big model with large dataset
• Must scale to 100+ GPUs
• Speed is important (foreground only)

• Ex) Quick test with small dataset
• Fits in < 1 GPU
• Can tolerate slower training 

(May run on background)

BGFG
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Our Proposed Solution

Enable high speedup while achieving high efficiency for the entire cluster:
1. Burst parallelism

§ Map each layer to an optimal set of GPUs

2. GPU multiplexing
§ Run a background job while GPU is idle for foreground



● Input: PyTorch-like model implementation, dataset, 
and inefficiency tolerance

● Burst parallel training planner
§ Decides the scaling of each layer to stay efficient
§ Profiles each layer with different batch sizes

(Planner also supports SOAP model parallelism)

● Runtime (for each GPU)
§ Manages & schedules jobs to GPU

● 1 distributed FG task, 1 local BG task
§ Uses C++ frontend of PyTorch & NCCL
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DeepPool system overview

Runtime
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RuntimeRuntime
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● PyTorch model description
● Dataset
● Inefficiency tolerance

submit (training plan in JSON)

schedule (pytorch module 
   description for each rank)

  Task Manager

GPU
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Kernel
/ graph

Kernel
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● Decides the level of strong scaling of each layer
§ Optimal global batch & available #GPUs are given by users

● Search by dynamic programming + graph reduction
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Burst Parallel Training Planner
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Efficiency: GPU-sec amplification
• GPU-sec: aggregate active GPU time / iter

(like man-hour or Watt-hour)
• GPU-sec amplification = 

!"#$%&' ()*+ ,-./*0
12+3/* !"# 24*5.426+ 427*

Cross-GPU 
activations & 
back-props
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Protecting QoS while Multiplexing

● Used 2 NVIDIA GPU features: CUDA streams (w/ priority), CUDA graph

● Problem: shared queue & non-preemptive scheduler

Ensuring low depth 
on the shared queue

Smaller BG 
batch size



● Workload: 3 image classification models
§ VGG-16 (132M params), WideResNet-101-2 (127M params), Inception-V3 (24M params)

● Hardware: DGX A100 box
§ 8 NVIDIA A100 GPUs
§ NVSwitch (600GB/s for each GPU)
§ CUDA 11.4,  cuDNN v8.2.4,  NCCL 2.10.3

● Questions
1. Can we improve training throughput of each GPU while strong scaling a foreground job?
2. Does DeepPool offer better combinations of total cluster throughput and foreground 

speedup than statically partitioning a cluster?
3. How do individual techniques of DeepPool enable low interference collocation?
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Evaluation



(a) VGG-16, scaling b=32 (b) WideResNet-101-2, scaling b=16 (c) InceptionV3, scaling b=32
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Can we improve training throughput?

1.2-2.3x

Legend
• DP: baseline, only data-parallel FG task by evenly splitting the 

global batch across 8 GPUs.
• BP: burst parallel training for FG task.
• BP+Col: collocates a low priority BG task with the burst-parallel 

FG job. FG and BG use the same workload.
• BG Only: runs the low priority BG task only (for reference)
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Burst Parallelism vs. Cluster Partition

● Baseline: partition cluster into “FG” GPUs and “BG” GPUs
§ 4 configs: <1 FG & 7 BG>, <2 FG & 6 BG>, <4 FG & 4 BG>, <8 FG>
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(a) VGG-16, scaling b=32 (b) WideResNet-101-2, scaling b=16 (c) InceptionV3, scaling b=32
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Decomposition of Each QoS Techniques

Multiplexing VGG16 on a cluster with 8x A100 GPUs.



● Two techniques for efficiently scaling DNN training: 
1. Burst parallel training
2. GPU multiplexing

● Limitations
§ Strong scaling only on the sample dimension & parallel layers
§ Background jobs run on a single GPU
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Conclusion
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Questions?

https://github.com/seojinpark/DeepPool
<seojin@csail.mit.edu>

https://github.com/seojinpark/DeepPool

