Efficient Strong Scaling Through
Burst Parallel DNN Training

MIT CSAIL

Mohammad Adam Belay
Alizadeh

August 30, 2022
MLSys 2022

Trend: DNN model complexity is increasing over time

Training cost of state-of-the-art DNN models over time

Petaflop/s-days

le+é4

le+3

le+?

AlphaGoZeroe

A[phéZero

Neural Machine
Translat
. Neural Architecture
Search
° TI7 Dota 1vl
Xception
DeepSpeechZ
VGG °
® Seg2Seq ResNet
Visualizing and .
Understanding C GoogleNet
AlexNet Nets
Dropout
3.4-month doubling
DQN
012 201 201 201 201 2017)1

300,000x increase Iin
compute over 5 years

Improvements in GPUs
(and TPUs) have only
partially closed this

gap

Slide 2

Requirement: Increasingly large training clusters

e Example: Facebook is using 256+ GPUs to train its DNN models
e Example: Google offers a 512-core pod slice (~2 Million $ per year)

e Hard problem: How to scale DNN training?

=i\ "=
+ Google’s Cloud TPU v3 Pod

Source: https://cloud.google.com/tpu

Slide 3

Conventional approach: Scale batch size with cluster

e Weak scaling (data parallelism + larger batches)

256.0 e Increases throughput (samples
--weak scaling / SeC) & keeps utilization hlgh
64.0 e Amortizes communication cost

16.0 BUT too large batches

reduce the statistical
efficiency of samples

Speed up
(VGG-11 to error=0.35)
.
=)

-
o

The batch size grows larger & larger

Slide 4

samples per GPU

ing

e Strong scaling (distribute samples to many GPUs)

scale by reduci

Alternative

e Speed up by reducing iteration time

=e-weak scaling

2

a-alternative

/

Q

4
©

256.0

Q Q
© <

<~

(Gg"0=Io118 0} LL-HDA)
dn paadg Buiuiea|

0000
0000
0000
0000
0000
0000
0000
0000

5
<
—

256

64

16
GPU count

~

[Must waste GPUs for
best speedup @

-

(Must sacrifice efficiency for the best speedup)

=» Leads to GPU underutilization

Slide 5

Opportunity 1: Unevenness in Scalability

e GPUs are wasted for unscalable layers

70 Almost linear

6_}7 \ ‘ speedup

Shrink

Don’t g?*—f-’[lster

Q5
-]
- 4
O
o 3
Q.
n 2
1

1 3456 7 8 91011121314151617 181920 21 22

Layer ID

Scalability of layers in VGG16 when scaled with 64 GPUs
(128 samples/ iteration — 2 samples / iteration)

Burst

Shrink

Slide 6

Opportunity 2: Existence of Small Jobs

e Large GPU cluster has many users and tasks

e Two kinds of training tasks exist in large GPU cluster

Large scale jobs Small scale jobs
« EXx) Training big model with large dataset * Ex) Quick test with small dataset
* Must scale to 100+ GPUs Fitsin<1 GPU
« Speed is important (foreground only) « Can tolerate slower training

(May run on background)

BG

Slide 7

Our Proposed Solution

Enable high speedup while achieving high efficiency for the entire cluster:

1. Burst parallelism
= Map each layer to an optimal set of GPUs

2. GPU multiplexing

= Run a background job while GPU is idle for foreground

Slide 8

Layer times
with different
configuration

DeepPool system overview

o Dataset

e PyTorch model description

o |nefficiency tolerance

y

y

Planner J

submit (training plan in JSON)

y

Burst Parallel
Training
Y
Cluster
Coordinator
s description for each rank)

schedule (pytorch module

Auntime

FG Job
LY

Task Manager
Distributed| | (waiting) 1[Local

2

BG Job
|

Perf.
Monitor Nt

GPU

Kernel
/ graph

Kernel
/ graph

e Input: PyTorch-like model implementation, dataset,
and inefficiency tolerance

e Burst parallel training planner
= Decides the scaling of each layer to stay efficient

= Profiles each layer with different batch sizes
(Planner also supports SOAP model parallelism)

e Runtime (for each GPU)

= Manages & schedules jobs to GPU
e 1 distributed FG task, 1 local BG task

= Uses C++ frontend of PyTorch & NCCL

Slide 9

Burst Parallel Training Planner

e Decides the level of strong scaling of each layer
= Optimal global batch & available #GPUs are given by users

e Search by dynamic programming + graph reduction

Efficiency: GPU-sec amplification
« GPU-sec: aggregate active GPU time / iter
(like man-hour or Watt-hour)

 GPU-sec amplification =
GPU—-secwhen scaled

Single GPU iteration time

Cross-GPU
activations &
back-props

Slide 10

Protecting QoS while Multiplexing

e Used 2 NVIDIA GPU features: CUDA streams (w/ priority), CUDA graph

e Problem: shared queue & non-preemptive scheduler

GP}J\

DeepPool Runtime High Priority
Stream Queue
Foreground op
N N ..
queues Admission
Background op Control
queues

Low Priori

Device queues

Smaller BG

batch size Ensuring low depth

on the shared queue

Slide 11

Evaluation

e Workload: 3 image classification models
= VGG-16 (132M params), WideResNet-101-2 (127M params), Inception-V3 (24M params)

e Hardware: DGX A100 box
= 8 NVIDIA A100 GPUs
= NVSwitch (600GB/s for each GPU)
= CUDA 114, cuDNN v8.2.4, NCCL 2.10.3

e Questions

1.
2.

Can we improve training throughput of each GPU while strong scaling a foreground job?

Does DeepPool offer better combinations of total cluster throughput and foreground
speedup than statically partitioning a cluster?

How do individual techniques of DeepPool enable low interference collocation?

Slide 12

Can we improve training throughput?

8G only N Legend
N — « DP: baseline, only data-parallel FG task by evenly splitting the
global batch across 8 GPUSs.
°F _/' BP: burst parallel training for FG task.
or [mEG W BG - BP+Col: collocates a low priority BG task with the burst-parallel
0 000 4000 6000 8000 FG job. FG and BG use the same workload.
Cluster Training Throughput (sample/s) « BG Only: runs the low priority BG task only (for reference)

(a) VGG-16, scaling b=32

Slide 13

Burst Parallelism vs. Cluster Partition

e Baseline: partition cluster into “FG” GPUs and “BG” GPUs
= 4 configs: <1 FG & 7BG>,<2FG &6 BG>, <4 FG &4 BG>, <8 FG>

1.0

—e—BP + Col
—e—Cluster Partition
BG Only

15 2.0 2.5 3.0
FG Speedup

(a) VGG-16, scaling b=32

%&e‘

3.5

1400
1200

[
o
o
o

800
600
400

Cluster Throughput

200

—e—BP + Col \
—e— Cluster Partition
BG Only
1.0 1.5 2.0 2.5 3.0
FG Speedup

(b) WideResNet-101-2, scaling b=16

2 6000 o \,

—e—BP + Col
—e— Cluster Partition
BG Only

1.0 1.5 2.0 2.5 3.0 3.5 4.0
FG Speedup

(c) InceptionV3, scaling b=32

Slide 14

Decomposition of Each QoS Techniques

+ Graph NN

VGG BP I WFG WBG

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Training Throughput (samples/s)

Multiplexing VGG16 on a cluster with 8x A100 GPUs.

Slide 15

Conclusion

e Two techniques for efficiently scaling DNN training:
1. Burst parallel training
2. GPU multiplexing

e Limitations
= Strong scaling only on the sample dimension & parallel layers
= Background jobs run on a single GPU

Slide 16

Questions?

https://github.com/seojinpark/DeepPool
<seojin@csail.mit.edu>

Slide 17

https://github.com/seojinpark/DeepPool

