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Trend: DNN model complexity is increasing over time

Training cost of state-of-the-art DNN models over time
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Requirement: Increasingly large training clusters

e Example: Facebook is using 256+ GPUs to train its DNN models
e Example: Google offers a 512-core pod slice (~2 Million $ per year)

e Hard problem: How to scale DNN training?

=i\ "=
+ Google’s Cloud TPU v3 Pod

Source: https://cloud.google.com/tpu
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Conventional approach: Scale batch size with cluster

e Weak scaling (data parallelism + larger batches)

256.0 e Increases throughput (samples
--weak scaling / SeC) & keeps utilization hlgh
64.0 e Amortizes communication cost

16.0 BUT too large batches

reduce the statistical
efficiency of samples

Speed up
(VGG-11 to error=0.35)
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The batch size grows larger & larger
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# samples per GPU

ing

e Strong scaling (distribute samples to many GPUs)

scale by reduci

Alternative

e Speed up by reducing iteration time
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Opportunity 1: Unevenness in Scalability

e GPUs are wasted for unscalable layers
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Scalability of layers in VGG16 when scaled with 64 GPUs
(128 samples/ iteration — 2 samples / iteration)
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Opportunity 2: Existence of Small Jobs

e Large GPU cluster has many users and tasks

e Two kinds of training tasks exist in large GPU cluster

Large scale jobs Small scale jobs
« EXx) Training big model with large dataset * Ex) Quick test with small dataset
* Must scale to 100+ GPUs  Fitsin<1 GPU
« Speed is important (foreground only) « Can tolerate slower training

(May run on background)

BG
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Our Proposed Solution

Enable high speedup while achieving high efficiency for the entire cluster:

1. Burst parallelism
= Map each layer to an optimal set of GPUs

2. GPU multiplexing

= Run a background job while GPU is idle for foreground
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e Input: PyTorch-like model implementation, dataset,
and inefficiency tolerance

e Burst parallel training planner
= Decides the scaling of each layer to stay efficient

= Profiles each layer with different batch sizes
(Planner also supports SOAP model parallelism)

e Runtime (for each GPU)

= Manages & schedules jobs to GPU
e 1 distributed FG task, 1 local BG task

= Uses C++ frontend of PyTorch & NCCL
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Burst Parallel Training Planner

e Decides the level of strong scaling of each layer
= Optimal global batch & available #GPUs are given by users

e Search by dynamic programming + graph reduction

Efficiency: GPU-sec amplification
« GPU-sec: aggregate active GPU time / iter
(like man-hour or Watt-hour)

 GPU-sec amplification =
GPU—-secwhen scaled

Single GPU iteration time

Cross-GPU
activations &
back-props
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Protecting QoS while Multiplexing

e Used 2 NVIDIA GPU features: CUDA streams (w/ priority), CUDA graph

e Problem: shared queue & non-preemptive scheduler

GP}J\

DeepPool Runtime High Priority
Stream Queue
Foreground op
N N ..
queues Admission
Background op Control
queues

Low Priori

Device queues

Smaller BG

batch size Ensuring low depth

on the shared queue
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Evaluation

e Workload: 3 image classification models
= VGG-16 (132M params), WideResNet-101-2 (127M params), Inception-V3 (24M params)

e Hardware: DGX A100 box
= 8 NVIDIA A100 GPUs
= NVSwitch (600GB/s for each GPU)
= CUDA 114, cuDNN v8.2.4, NCCL 2.10.3

e Questions

1.
2.

Can we improve training throughput of each GPU while strong scaling a foreground job?

Does DeepPool offer better combinations of total cluster throughput and foreground
speedup than statically partitioning a cluster?

How do individual techniques of DeepPool enable low interference collocation?
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Can we improve training throughput?

8G only N Legend
N — « DP: baseline, only data-parallel FG task by evenly splitting the
global batch across 8 GPUSs.
°F _/'  BP: burst parallel training for FG task.
or [ mEG W BG - BP+Col: collocates a low priority BG task with the burst-parallel
0 000 4000 6000 8000 FG job. FG and BG use the same workload.
Cluster Training Throughput (sample/s) « BG Only: runs the low priority BG task only (for reference)

(a) VGG-16, scaling b=32
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Burst Parallelism vs. Cluster Partition

e Baseline: partition cluster into “FG” GPUs and “BG” GPUs
= 4 configs: <1 FG & 7BG>,<2FG &6 BG>, <4 FG &4 BG>, <8 FG>
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(a) VGG-16, scaling b=32
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(b) WideResNet-101-2, scaling b=16
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(c) InceptionV3, scaling b=32

Slide 14



Decomposition of Each QoS Techniques

+ Graph NN

VGG BP I WFG WBG

0 1000 2000 3000 4000 5000 6000 7000 8000 9000
Training Throughput (samples/s)

Multiplexing VGG16 on a cluster with 8x A100 GPUs.
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Conclusion

e Two techniques for efficiently scaling DNN training:
1. Burst parallel training
2. GPU multiplexing

e Limitations
= Strong scaling only on the sample dimension & parallel layers
= Background jobs run on a single GPU
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Questions?

https://github.com/seojinpark/DeepPool
<seojin@csail.mit.edu>
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