
Efficient Strong Scaling Through
Burst Parallel DNN Training

MIT CSAIL

August 30, 2022
MLSys 2022

● 300,000x increase in
compute over 5 years

● Improvements in GPUs
(and TPUs) have only
partially closed this
gap

Slide 2

Trend: DNN model complexity is increasing over time

Training cost of state-of-the-art DNN models over time

● Example: Facebook is using 256+ GPUs to train its DNN models

● Example: Google offers a 512-core pod slice (~2 Million $ per year)

● Hard problem: How to scale DNN training?

Slide 3

Requirement: Increasingly large training clusters

Google’s Cloud TPU v3 Pod
Source: https://cloud.google.com/tpu

● Weak scaling (data parallelism + larger batches)

Slide 4

Conventional approach: Scale batch size with cluster

The batch size grows larger & larger

……

Some benefits
● Increases throughput (samples

/ sec) & keeps utilization high
● Amortizes communication cost

BUT too large batches
reduce the statistical
efficiency of samples

1.0

4.0

16.0

64.0

256.0

1 4 16 64 256

Sp
ee

d
up

(V

G
G

-1
1

to
 e

rro
r=

0.
35

)

GPU count

weak scaling

● Strong scaling (distribute samples to many GPUs)

Slide 5

Alternative: scale by reducing # samples per GPU

1.0

4.0

16.0

64.0

256.0

1 4 16 64 256

Tr
ai

ni
ng

 S
pe

ed
 U

p
(V

G
G

-1
1

to
 e

rro
r=

0.
35

)

GPU count

weak scaling

batch-optimal scalingalternative

…

● Speed up by reducing iteration time

è Leads to GPU underutilization
(Must sacrifice efficiency for the best speedup)

Must waste GPUs for
best speedup

● GPUs are wasted for unscalable layers

Slide 6

Opportunity 1: Unevenness in Scalability

0
10
20
30
40
50
60
70

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22

Sp
ee

d
up

Layer ID
Scalability of layers in VGG16 when scaled with 64 GPUs

(128 samples/ iteration → 2 samples / iteration)

Don’t get faster

Almost linear
speedup

Bu
rs

t Sh
rin

k

Sh
rin

k

● Large GPU cluster has many users and tasks
● Two kinds of training tasks exist in large GPU cluster

Slide 7

Opportunity 2: Existence of Small Jobs

Large scale jobs Small scale jobs

• Ex) Training big model with large dataset
• Must scale to 100+ GPUs
• Speed is important (foreground only)

• Ex) Quick test with small dataset
• Fits in < 1 GPU
• Can tolerate slower training

(May run on background)

BGFG

Slide 8

Our Proposed Solution

Enable high speedup while achieving high efficiency for the entire cluster:
1. Burst parallelism

§ Map each layer to an optimal set of GPUs

2. GPU multiplexing
§ Run a background job while GPU is idle for foreground

● Input: PyTorch-like model implementation, dataset,
and inefficiency tolerance

● Burst parallel training planner
§ Decides the scaling of each layer to stay efficient
§ Profiles each layer with different batch sizes

(Planner also supports SOAP model parallelism)

● Runtime (for each GPU)
§ Manages & schedules jobs to GPU

● 1 distributed FG task, 1 local BG task
§ Uses C++ frontend of PyTorch & NCCL

Slide 9

DeepPool system overview

Runtime

Cluster
Coordinator

RuntimeRuntime

Burst Parallel
Training Planner

● PyTorch model description
● Dataset
● Inefficiency tolerance

submit (training plan in JSON)

schedule (pytorch module
 description for each rank)

 Task Manager

GPU

NCCL

Kernel
/ graph

Kernel
/ graph

Distributed
FG Job

Local
BG Job

(waiting)
FG Job

Perf.
Monitor

Layer times
with different
configurations

● Decides the level of strong scaling of each layer
§ Optimal global batch & available #GPUs are given by users

● Search by dynamic programming + graph reduction

Slide 10

Burst Parallel Training Planner

8 x

8 x

4 x

1 x

1 x

Efficiency: GPU-sec amplification
• GPU-sec: aggregate active GPU time / iter

(like man-hour or Watt-hour)
• GPU-sec amplification =

!"#$%&' ()*+ ,-./*0
12+3/* !"# 24*5.426+ 427*

Cross-GPU
activations &
back-props

Slide 11

Protecting QoS while Multiplexing

● Used 2 NVIDIA GPU features: CUDA streams (w/ priority), CUDA graph

● Problem: shared queue & non-preemptive scheduler

Ensuring low depth
on the shared queue

Smaller BG
batch size

● Workload: 3 image classification models
§ VGG-16 (132M params), WideResNet-101-2 (127M params), Inception-V3 (24M params)

● Hardware: DGX A100 box
§ 8 NVIDIA A100 GPUs
§ NVSwitch (600GB/s for each GPU)
§ CUDA 11.4, cuDNN v8.2.4, NCCL 2.10.3

● Questions
1. Can we improve training throughput of each GPU while strong scaling a foreground job?
2. Does DeepPool offer better combinations of total cluster throughput and foreground

speedup than statically partitioning a cluster?
3. How do individual techniques of DeepPool enable low interference collocation?

Slide 12

Evaluation

(a) VGG-16, scaling b=32 (b) WideResNet-101-2, scaling b=16 (c) InceptionV3, scaling b=32

0 500 1000

DP

BP

BP + Col

BG Only

Cluster Training Throughput (sample/s)

FG BG

0 2000 4000 6000 8000

DP

BP

BP + Col

BG Only

Cluster Training Throughput (sample/s)

FG BG

0 2000 4000 6000

DP

BP

BP + Col

BG Only

Cluster Training Throughput (sample/s)

FG BG

Slide 13

Can we improve training throughput?

1.2-2.3x

Legend
• DP: baseline, only data-parallel FG task by evenly splitting the

global batch across 8 GPUs.
• BP: burst parallel training for FG task.
• BP+Col: collocates a low priority BG task with the burst-parallel

FG job. FG and BG use the same workload.
• BG Only: runs the low priority BG task only (for reference)

Slide 14

Burst Parallelism vs. Cluster Partition

● Baseline: partition cluster into “FG” GPUs and “BG” GPUs
§ 4 configs: <1 FG & 7 BG>, <2 FG & 6 BG>, <4 FG & 4 BG>, <8 FG>

0
1000
2000
3000
4000
5000
6000
7000
8000
9000

1.0 1.5 2.0 2.5 3.0 3.5

Cl
us

te
r T

hr
ou

gh
pu

t

FG Speedup

BP + Col
Cluster Partition
BG Only

Bet
ter

0

200

400

600

800

1000

1200

1400

1.0 1.5 2.0 2.5 3.0

Cl
us

te
r T

hr
ou

gh
pu

t

FG Speedup

BP + Col
Cluster Partition
BG Only

0
1000
2000
3000
4000
5000

6000
7000
8000

1.0 1.5 2.0 2.5 3.0 3.5 4.0

Cl
us

te
r T

hr
ou

gh
pu

t

FG Speedup

BP + Col
Cluster Partition
BG Only

(a) VGG-16, scaling b=32 (b) WideResNet-101-2, scaling b=16 (c) InceptionV3, scaling b=32

0 1000 2000 3000 4000 5000 6000 7000 8000 9000

VGG BP

+ Graph

+ Naïve Collocation

+ Stream Prior ities

+ Launch Pacing

+ Slowdown Feedback Loop

+ Reducing BE Batch Size

Training Throughput (samples/s)

FG BG

Slide 15

Decomposition of Each QoS Techniques

Multiplexing VGG16 on a cluster with 8x A100 GPUs.

● Two techniques for efficiently scaling DNN training:
1. Burst parallel training
2. GPU multiplexing

● Limitations
§ Strong scaling only on the sample dimension & parallel layers
§ Background jobs run on a single GPU

Slide 16

Conclusion

Slide 17

Questions?

https://github.com/seojinpark/DeepPool
<seojin@csail.mit.edu>

https://github.com/seojinpark/DeepPool

