
Caladan: Mitigating Interference
at Microsecond Timescales

k

Josh Fried Zain Ruan Amy
Ousterhout Adam Belay

Low Tail Latency is Critical in Datacenters

• High degrees of fanout

• Overall performance
determined by tail latency

Must Balance Latency with Efficiency
Ideal: Operate hardware at 100% utilization

Operators pack multiple tasks on each machine

Latency-Critical
tasks

Best-Effort
tasks

Challenge: Noisy Neighbors

4

Tasks on the same CPU
contend for shared
resources

• Cores
• Caches
• Memory bandwidth
• Shared execution units

D

Shared Resources

Interference

Challenge: Resource Usage Constantly
Shifts

• Application load can be bursty at microsecond-scales
• Network traffic on Google datacenter machines
• Thread wakeups in Microsoft’s Bing service

• Many applications exhibit phased behaviors
• Compression, compilation
• Spark compute jobs
• Garbage collection

5

Interference Example

6

0 1 2 3 4 5 6
Time (s)

0

50

100

0
em

. %
/W

 (%
)

0 1 2 3 4 5 6
TLme (s)

102

103

104

105

99
.9

%
 L

at
. (
μs

)
Garbage

Collection

1000 x
latency

increase

Memcached
2 cores

Be
tt

er

GC Task
20 cores

How fast must we react?

7100 μs window to react to keep latencies below SLO

Interference
begins

100 μs
window

Existing Solutions

8

D

Existing Solutions

9

Existing solutions solve the
problem by partitioning resources

e.g. dedicating cores, partitioning
caches, etc.

Existing Solutions

Recent systems dynamically
adjust partitions
• Heracles [ISCA ‘15]

• Converges in 30 seconds
• Parties [ASPLOS ‘19]

• Converges in 10-20 seconds

10

Existing solutions solve the
problem by partitioning resources

e.g. dedicating cores, partitioning
caches, etc.

100,000x too slow for GC example

Goal

Provide strict performance isolation and high resource utilization for
datacenter servers

Not achievable unless we can detect and mitigate interference at
microsecond timescales

11

Challenges at the μs-Timescale

Finding signals that accurately indicate interference
• Multiple types of interference (LLC, Memory bandwidth, etc)
• Many possible tasks could be causing interference
• Commonly used signals take milliseconds or more to stabilize

Gathering signals and reacting with low overhead
• Existing mechanisms don’t scale well with many cores and tasks

12

Caladan’s Contributions

• Use exclusively core allocation to manage interference
• Previous systems partition caches, memory bandwidth, etc

• New signals for multiple forms of interference
• Accurately identify type and source in microseconds

• KSCHED: kernel module to make signal gathering and core
allocation scalable
• Can collect perf counters from all cores in several microseconds

13

Unallocated

Caladan’s Components
• Scheduler core spin polls

for signals, assigns tasks to
cores

• Tasks link with runtimes
• Provide threading, I/O, etc.
• Expose signals to scheduler

• KSCHED accelerates
scheduling and access to
remote performance
counters

14

DRAM
Controller

(PCIe)

Core 1 Core 2 Core 3 Core 5 Core 6

Task 1 Task 2

ksched ksched ksched ksched ksched

Runtime Runtime

Core 4

ksched

Scheduler

Core 0

ksched

Unallocated

Caladan’s Components
• Scheduler core spin polls

for signals, assigns tasks to
cores

• Tasks link with runtimes
• Provide threading, I/O, etc.
• Expose signals to scheduler

• KSCHED accelerates
scheduling and signal
gathering

15

DRAM
Controller

(PCIe)

Core 1 Core 2 Core 3 Core 5 Core 6

Task 1 Task 2

ksched ksched ksched ksched ksched

Runtime Runtime

Core 4

ksched

Scheduler

Core 0

ksched

Unallocated

Caladan’s Components
• Scheduler core spin polls

for signals, assigns tasks to
cores

• Tasks link with runtimes
• Provide threading, I/O, etc.
• Expose signals to scheduler

• KSCHED accelerates
scheduling and signal
gathering

16

DRAM
Controller

(PCIe)

Core 1 Core 2 Core 3 Core 5 Core 6

Task 1 Task 2

ksched ksched ksched ksched ksched

Runtime Runtime

Core 4

ksched

Scheduler

Core 0

ksched
• KSCHED accelerates

scheduling and signal
gathering

Mitigating Interference

17

DRAM
Bandwidth LLC Misses

Request
Processing

Times

Queueing
Delay

Signals

DRAM
Bandwidth

Interference

Hyperthread
Interference

LLC and other
interference,
load changes

Revoke
cores from
antagonist

task

Remove
task on

sibling core

Add core to
victim

Actions

+
Direct

Indirect

Signal Sources

18

Unallocated

DRAM
Controller

(PCIe)

Core 1 Core 2 Core 3 Core 5 Core 6

Task 1 Task 2

ksched ksched ksched ksched ksched

Runtime Runtime

Core 4

ksched

Scheduler

Core 0

ksched

Shared
Memory

DRAM controller
- DRAM bandwidth utilization

Runtime shared memory
- Queueing delays
- Request processing delays

KSCHED shared memory
- per-core LLC miss counters

Core Allocation

19

Unallocated

DRAM
Controller

(PCIe)

Core 1 Core 2 Core 3 Core 5 Core 6

Task 1 Task 2

ksched ksched ksched ksched ksched

Runtime Runtime

Core 4

ksched

Scheduler

Core 0

ksched

Shared
Memory

Existing systems use Linux
system calls for scheduling

sched_setaffinity(), tgkill(), etc.

KSCHED Optimizations:
- Offload scheduling work
- Multicast Inter-processor

Interrupts (IPI)
- Asynchronous interface

Mitigating Memory Bandwidth
Interference

20

 0

 200

 400

 600

 800

 0 5 10 15 20 25 30

M
em

or
y

La
t.

(n
s)

Generated Memory Bandwidth (GB/s)

Be
tt

er

• Policy: keep total bandwidth
below target (~80%)

• Detecting Bandwidth Usage:
• DRAM controller counters

• Identifying an antagonist:
• per-core LLC miss counters

Memory
latency

degrades
severely

Example: Mitigating Memory Bandwidth
Interference

21

DRAM
Controller

(PCIe)

Core 1 Core 12

BE #1

ksched ksched

Runtime

Scheduler

Core 0

ksched

0 μs:
• BE task 1 begins

consuming 100% of
memory bandwidth

… Core 13 Core 21

BE #2

ksched ksched

Runtime

… Core 22

LC #1

ksched

Runtime

Core 2

ksched

Example: Mitigating Memory Bandwidth
Interference

22

DRAM
Controller

(PCIe)

Core 1 Core 12

ksched ksched

Scheduler

Core 0

ksched

0 μs:
• BE task 1 begins

consuming 100% of
memory bandwidth

10 μs:
• Interference Detected
• LLC Sampled

… Core 13 Core 21

ksched ksched

… Core 22

ksched

Core 2

ksched

BE #1

Runtime

BE #2

Runtime

LC #1

Runtime

Example: Mitigating Memory Bandwidth
Interference

23

DRAM
Controller

(PCIe)

Core 1 Core 12

ksched ksched

Scheduler

Core 0

ksched

0 μs:
• BE task 1 begins

consuming 100% of
memory bandwidth

10 μs:
• Interference Detected
• LLC Sampled

20 μs:
• LLC Sampled

… Core 13 Core 21

ksched ksched

… Core 22

ksched

Core 2

ksched

BE #1

Runtime

BE #2

Runtime

LC #1

Runtime

Example: Mitigating Memory Bandwidth
Interference

24

DRAM
Controller

(PCIe)

Core 1 Core 12

ksched ksched

Scheduler

Core 0

ksched

0 μs:
• BE task 1 begins

consuming 100% of
memory bandwidth

10 μs:
• Interference Detected
• LLC Sampled

… Core 13 Core 21

ksched ksched

… Core 22

ksched

Core 2

ksched

20 μs:
• LLC Sampled
• Task 1 has core revoked

BE #1

Runtime

BE #2

Runtime

LC #1

Runtime

Unallocated

Example: Mitigating Memory Bandwidth
Interference

25

DRAM
Controller

(PCIe)

Core 1 Core 12

BE #1

ksched ksched

Runtime

Scheduler

Core 0

ksched

0 μs:
• BE task 1 begins

consuming 100% of
memory bandwidth

10 μs:
• Interference Detected
• LLC Sampled

20 μs:
• LLC Sampled
• Core revoked from BE #1

… Core 13 Core 21

BE #2

ksched ksched

Runtime

… Core 22

LC #1

ksched

Runtime

Core 2

ksched

Implementation

Scheduler
• Optimized to run the full control loop every 10 μs
• 3500 LOC

KSCHED
• Runs on the Linux Kernel 5.2.0
• Leverages hardware multicast IPIs
• 530 LOC

Runtime
• derived from Shenango [NSDI ‘19]
• Integrated libibverbs and SPDK to provide direct access to I/O devices

• 3000 LOC
• Supports Mellanox ConnectX-5

26

Evaluation

1. How does Caladan compare to state-of-the-art systems?
2. Are Caladan's benefits generalizable to many tasks sharing a server?

State-of-the-art: Parties [ASPLOS ‘19]
• Adjusts core and cache partitions
• 500 ms decision interval, 10-20 seconds convergence
• Our implementation: Parties*

Ported Tasks:
• Latency-Critical: memcached, storage service, silo database
• Best-Effort: streamcluster and swaptions-GC (PARSEC)

27

Memcached and GC

28

Memcached

GC Task

Latency
reaches
580 msBe

tt
er

Be
tt

er
Low tail
latency
(50 μs)

GC task able
to utilize all

available
resources

Throttles BE
after GC has
completed

Garbage Collection Cycle

Key

Caladan can improve latency 11,000x when interference is phased

Colocating Many Tasks

• 3 Latency-Critical Tasks
• Memcached
• Flash storage service
• Silo

• 2 Best-Effort Tasks
• Swaptions (GC Task)
• Streamcluster

30 seconds, variable load and interference

29

SSD

250
500
750

swaStLRns-GC streaPcOuster

stRrage PePcacheG sLOR

50

100

99
.9

%
 /

at
en

cy
 (μ

s)

250

500

0
10
20

/C
 5

PS
 (%

)

0 5 10 15 20 25
7LPe (s)

0

5

10

CR
re

s

0

25

50

%(
 2

S/
s

(%
)

Colocating Many Tasks

250
500
750

swaStLRns-GC streaPcOuster

stRrage PePcacheG sLOR

50

100

99
.9

%
 /

at
en

cy
 (μ

s)

250

500

0
10
20

/C
 5

PS
 (%

)

0 5 10 15 20 25
7LPe (s)

0

5

10

CR
re

s

0

25

50

%(
 2

S/
s

(%
)

30

250
500
750

swaStLRns-GC streaPcOuster

stRrage PePcacheG sLOR

50

100
99

.9
%

 /
at

en
cy

 (μ
s)

250

500

0
10
20

/C
 5

PS
 (%

)

0 5 10 15 20 25
7LPe (s)

0

5

10

CR
re

s

0

25

50

%(
 2

S/
s

(%
)

250
500
750

swaStLRns-GC streaPcOuster

stRrage PePcacheG sLOR

50

100

99
.9

%
 /

at
en

cy
 (μ

s)

250

500

0
10
20

/C
 5

PS
 (%

)

0 5 10 15 20 25
7LPe (s)

0

5

10
CR

re
s

0

25

50

%(
 2

S/
s

(%
)

250
500
750

swaStLRns-GC streaPcOuster

stRrage PePcacheG sLOR

50

100

99
.9

%
 /

at
en

cy
 (μ

s)

250

500

0
10
20

/C
 5

PS
 (%

)

0 5 10 15 20 25
7LPe (s)

0

5

10

CR
re

s

0

25

50

%(
 2

S/
s

(%
)

250
500
750

swaStLRns-GC streaPcOuster

stRrage PePcacheG sLOR

50

100

99
.9

%
 /

at
en

cy
 (μ

s)

250

500

0
10
20

/C
 5

PS
 (%

)

0 5 10 15 20 25
7LPe (s)

0

5

10

CR
re

s

0

25

50

%(
 2

S/
s

(%
)

Latencies (99.9th percentile)
memcached

storage

silo

Offered Load (% of peak)

250
500
750

swaStLRns-GC streaPcOuster

stRrage PePcacheG sLOR

50

100

99
.9

%
 /

at
en

cy
 (μ

s)

250

500

0
10
20

/C
 5

PS
 (%

)

0 5 10 15 20 25
7LPe (s)

0

5

10

CR
re

s

0

25

50

%(
 2

S/
s

(%
)

BE Op/s (% of peak)

Be
tt

er

Be
tt

er250
500
750

swaStLRns-GC streaPcOuster GC CycOe

stRrage PePcacheG sLOR

50

100
99

.9
%

 /
at

en
cy

 (μ
s)

250

500

0
10
20

/C
 5

PS
 (%

)

0 5 10 15 20 25
7LPe (s)

0

5

10

CR
re

s

0

25

50

%(
 2

S/
s

(%
)

250
500
750

swaStLRns-GC streaPcOuster

stRrage PePcacheG sLOR

50

100
99

.9
%

 /
at

en
cy

 (μ
s)

250

500

0
10
20

/C
 5

PS
 (%

)

0 5 10 15 20 25
7LPe (s)

0

5

10

CR
re

s

0

25

50

%(
 2

S/
s

(%
)

Caladan maintains low tail latency for all 3 LC tasks under varying load and interference

Be
tt

er
Be

tt
er

Core allocations
occur up to 230,000

times per second

Josh Fried

Requirements for Applications

Applications must link with the runtime
• Export signals, balance work across active cores
• Realistic programming model

• Partial compatibility layer for some systems libraries

LC applications must expose internal parallelism to runtime
• Example: Memcached modified to spawn a thread per-connection

• Allows scheduler to observe delays
• Allows scheduler to mitigate delays with additional cores

No required changes for BE tasks

31

Conclusion

Caladan improves machine utilization and performance isolation for
low-latency workloads when colocated with noisy best-effort tasks

• Uses no hardware partitioning mechanisms, only rapid core-scheduling
• Uses carefully selected control signals
• Employs many optimizations to make signal collection and core allocation

efficient

• Offers 11,000x latency improvement over the state-of-the-art for a latency-
critical workload when there is phased interference

32

https://github.com/shenango/caladan

https://github.com/shenango/caladan

