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Abstract. Memory is the most contended and least elas-
tic resource in datacenter servers today. Applications can
use only local memory—which may be scarce—even though
memory might be readily available on another server. This
leads to unnecessary killings of workloads under memory
pressure and reduces effective server utilization.

We present application-integrated far memory (AIFM),
which makes remote, “far” memory available to applications
through a simple API and with high performance. AIFM
achieves the same common-case access latency for far mem-
ory as for local RAM; it avoids read and write amplification
that paging-based approaches suffer; it allows data structure
engineers to build remoteable, hybrid near/far memory data
structures; and it makes far memory transparent and easy to
use for application developers.

Our key insight is that exposing application-level semantics
to a high-performance runtime makes efficient remoteable
memory possible. Developers use AIFM’s APIs to make allo-
cations remoteable, and AIFM’s runtime handles swapping
objects in and out, prefetching, and memory evacuation.

We evaluate AIFM with a prototypical web application
frontend, a NYC taxi data analytics workload, a memcached-
like key-value cache, and Snappy compression. Adding AIFM
remoteable memory to these applications increases their avail-
able memory without performance penalty. AIFM outper-
forms Fastswap, a state-of-the-art kernel-integrated, paging-
based far memory system [6] by up to 61×.

1 Introduction
Memory (RAM) is the most constrained resource in today’s
datacenters. For example, the average memory utilization
on servers at Google [73] and Alibaba [46] is 60%, with
substantial variance across servers, compared to an average
CPU utilization of around 40%. But memory is also the most
inelastic resource: once a server runs out of available memory,
some running applications must be killed. In a month, 790k
jobs at Google had at least one instance killed, in many cases
due to memory pressure [73]. A killed instance’s work and
accumulated state are lost, wasting both time and energy. This
waste happens even though memory may be available on
other servers in the cluster, or even locally: around 30% of
server memory are “cold” and have not been accessed for
minutes [41], suggesting they could be reclaimed.

Operating systems today support memory elasticity primar-
ily through swap mechanisms, which free up RAM by pushing
unused physical memory pages to a slower tier of memory,

Throughput [accesses/sec] 64B object 4KB object
Paging-based (Fastswap [6]) 582K 582K

AIFM 3,975K 1,059K

Figure 1: AIFM achieves 6.8× higher throughput for 64B
objects and 1.81× higher throughput for 4KB objects, com-
pared to Fastswap [6], a page-granular, kernel-integrated far
memory approach. AIFM performs well since it (i) avoids IO
amplification and (ii) context switches while waiting for data.

such as disks or remote memory. But OS swap mechanisms
operate at a fixed and coarse granularity and incur substantial
overheads. To swap in a page, the OS must handle a page
fault, which requires entering the kernel and waiting until the
data arrives. Figure 1 shows the throughput a recent page-
based far memory system (viz., Fastswap [6]) achieves when
accessing remote objects using up to four CPU cores. Ker-
nel swapping happens at the granularity of 4KB pages, so
page-based far memory suffers read/write amplification when
accessing small objects, as at least 4KB must always be trans-
ferred. Moreover, the Linux kernel spins while waiting for
data from swap to avoid the overheads of context switch and
interrupt handling. That means the wait time (about 15–20k
cycles with Fastswap’s RDMA backend) is wasted.

We describe a fundamentally different approach:
application-integrated far memory (AIFM), which ties
swapping to individual application-level memory objects,
rather than the virtual memory (VM) abstraction of pages.
Developers write remoteable data structures whose backing
memory can be local and “far”—i.e., on a remote server—
without affecting common-case latency or application
throughput. When AIFM detects memory pressure, its
runtime swaps out objects and turns all pointers to the objects
into remote pointers. When the application dereferences a
remote pointer, a lightweight green threads runtime restores
the object to local memory. The runtime’s low context switch
cost permits other green threads to make productive use
of the wait cycles, which hides remote access latency and
maintains high throughput. Due to these fast context switches,
AIFM achieves 81% higher throughput than page-based
approaches when accessing 4KB objects, and because AIFM
avoids amplification, it achieves 6.8× higher throughput for
small objects (Figure 1).

AIFM’s programming interface is based on four key ideas:
a fast, low-overhead remoteable pointer abstraction, a pause-
less memory evacuator, runtime APIs that allow data struc-
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tures to convey semantic information to the runtime, and a
remote device interface that helps offload light computations
to remote memory. These AIFM APIs allow data structure en-
gineers to build hybrid local/remote data structures with ease,
and provide a developer experience similar to C++ standard
library data structures. The pauseless memory evacuator en-
sures that application threads never experience latency spikes
due to swapping. Because data structures convey their seman-
tics to the runtime, AIFM supports custom prefetching and
caching policies—e.g., prefetching remote data in a remote-
able list and streaming of remote data that avoids polluting the
local memory cache. Finally, AIFM’s offloading reduces data
movement and alleviates the network bottleneck that most
far-memory systems experience.

The combination of these ideas allows AIFM to achieve
object access latencies bounded only by hardware speed: if an
object is local, its access latency is comparable to an ordinary
pointer dereference; when it is remote, AIFM’s access latency
is close to the hardware device latency.

We evaluate AIFM with a real-world data analytics work-
load built on DataFrames [16], a synthetic web application
frontend that uses several remoteable data structures, as well
as a memcached-style workload, Snappy compression, and mi-
crobenchmarks. Our experiments show that AIFM maintains
high application request throughput and outperforms a state-
of-them-art, page-based remote memory system, Fastswap,
by up to 61×. In summary, our contributions are:

1. Application-integrated far memory (AIFM), a new de-
sign to extend a server’s effective memory size using
“far” memory on other servers or storage devices.

2. A realization of AIFM with convenient APIs for devel-
opment of applications and remoteable data structures.

3. A high-performance runtime design using green threads
and a pauseless memory evacuator that imposes minimal
overhead on local object accesses and avoids wasting
cycles while waiting for remote object data.

4. Evaluation of our AIFM prototype on several workloads,
and microbenchmarks that justify our design choices.

Our prototype is limited to unshared far memory objects on a
single memory server. Future work may add multi-server sup-
port, devise strategies for dynamic sizing of remote memory,
or investigate sharing.

2 Background and Related Work
OS swapping and far memory. Operating systems to-
day primarily achieve memory elasticity by swapping phys-
ical memory pages out into secondary storage. Classically,
secondary storage consisted of disks, which are larger and
cheaper but slower than DRAM. The use of disk-based swap
has been rare in datacenters, since it incurs a large perfor-
mance penalty. More recent efforts consider swapping to a
faster tier of memory or far memory, such as the remote mem-
ory of a host [3, 6, 21, 27, 28, 31, 40, 45, 48, 67] or a com-
pression cache [24, 41, 81, 82]. Since swapping is integrated

with the kernel virtual memory subsystem, it is transparent
to user-space applications. But this transparency also forces
swapping granularity to the smallest virtual memory primitive,
a 4KB page. Combined with memory objects smaller than
4KB, this leads to I/O amplification: when accessing an object,
the kernel must swap in a full 4KB page independent of the
object’s actual memory size. Moreover, supplying application
semantic information, such as the expected memory access
pattern, the appropriate prefetch strategy, or memory hotness,
is limited to coarse and inflexible interfaces like madvise.

AIFM uses far memory in a different way from swap-
ping, by operating at object granularity rather than page-
granularity—an idea that we borrow from prior work on
distributed shared memory (see below), memory compres-
sion [75], and SSD storage [1]. These investigations all point
to page-level I/O amplification as a key motivation.

AIFM provides transparent access to far memory using
smart pointers and dereference scopes inspired by C++ weak
pointers [69], and Folly RCU guards [26].

Disaggregated and distributed shared memory. Disag-
gregated memory [58] refers to a hardware architecture where
a fast fabric connects hosts to a pool of memory [29, 33],
which is possibly managed by a cluster-wide operating sys-
tem [33, 66]. Disaggregated memory requires new hardware
that has not yet made it to production. AIFM focuses on
software solutions for today’s hardware.

Distributed shared memory (DSM) provides an abstraction
of shared memory implemented over message passing [7, 10,
44, 50, 64, 65]. Like far memory, DSM systems can be page-
based or object-based. DSM differs from far memory both
conceptually and practically. Conceptually, DSM provides a
different abstraction, where data is shared across different
hosts (the “S” in DSM). Practically, this abstraction leads
to complexity and inefficiency, as DSM requires a cache co-
herence protocol that impairs performance. For instance, ac-
cessing data must determine if a remote cache holds a copy
of the data. By contrast, data in far memory is private to a
host—a stricter abstraction that makes it possible to realize
far memory more efficiently. Finally, DSM systems were de-
signed decades ago, and architectural details and constants of
modern hardware differ from their environments.

Technologies to access remote data. TCP/IP is the domi-
nant protocol for accessing data remotely, and AIFM currently
uses TCP/IP. Faster alternatives to TCP/IP exist, and could
be used to improve AIFM further, but these technologies are
orthogonal or complementary to AIFM’s key ideas.

RDMA is an old technology that has recently been com-
moditized over Ethernet [32], generating new interest. Much
work is devoted to using RDMA efficiently in general [39, 51,
76] or for specific applications, such as key-value stores (e.g.,
[38, 49]) or database systems [11]. Smart NICs use CPUs or
FPGAs [47, 52, 70] to provide programmable remote func-
tionality [18, 43, 68]. AIFM requires no specialized hardware.
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Abstractions for remote data. Remote Procedure Calls
(RPCs) [12] are widely used to access remote data, including
over RDMA [19, 71] or TCP/IP [37]. Memory-mapped files
can offer remote memory behind a familiar abstraction [2,
67], while data structure libraries for remote data [4, 15], offer
maps, sets, multisets, lists, and other familiar constructs to
developers. This is similar in spirit to data structure libraries
for persistent memory [59, 62]. AIFM offers a lower-level
service that helps programmers develop such data structures.

I/O amplification. As mentioned, page-based access leads
to I/O amplification, a problem studied extensively in the con-
text of storage systems [1, 61] and far-memory systems [17],
where hardware-based solutions can reduce amplification by
tracking accesses at the granularity of cache lines.

Garbage collection and memory evacuation. Moving ob-
jects to remote memory in AIFM (“evacuation”) is closely
related to mark-compact garbage collection (GC) in managed
languages. The main difference is that AIFM aims to increase
memory capacity by moving cold, but live objects to remote
memory, while GCs focus on releasing dead, unreferenced ob-
jects’ memory. AIFM uses referencing counting to free dead
objects, avoiding the need for a tracing stage. Instead of invent-
ing a new evacuation algorithm, AIFM borrows ideas from the
GC literature and adapts them to far-memory systems. Like
GCs, AIFM leverages a read/write barrier to maintain object
hotness [5, 14, 34], but AIFM uses a one-byte hotness counter
instead of a one-bit flag, allowing more fine-grained replace-
ment policies. Like AIFM, some copying collectors optimize
data locality by separating hot and cold data during GC, but
target different memory hierarchies; e.g., the cache-DRAM
hierarchy [34], the DRAM-NVM hierarchy [5, 79, 80], and
the DRAM-disk hierarchy [14]. Finally, memory evacuation
interferes with user tasks and impacts their performance. To
reduce the interference, AIFM adopts an approach similar to
the pauseless GC algorithms in managed languages [20], as
opposed to the stop-the-world GC algorithms [36].

3 Motivation
Kernel paging mechanisms impose substantial overheads over
the fundamental cost of accessing far memory.

Consider Figure 2, which breaks down the costs of Linux
(v5.0.0) retrieving a swapped-out page from an SSD. The
device’s hardware latency is about 6µs, but Linux takes over
15µs (2.5×) due to overheads associated with locking (P1,
P5), virtual memory management (P2, P3, P5), accounting
(P4), and read IO amplification (P3). Moreover, due to the
high cost of context switches, Linux spins while waiting for
data (P3), wasting 11.7µs of possible compute time.

AIFM, by contrast, provides low-overhead abstractions and
an efficient user-space runtime that avoid these costs, bringing
its latency (6.8µs) close to the hardware limit of 6µs. We
explain these concepts in the next two sections.

Phase Linux Kernel Swapping AIFM
P1 Page fault, trap to kernel Deref far pointer, issue I/O
P2 Lock, get PTE, allocate page

frame, allocate swap cache entry
Lightweight context-switch

P3 Issue read I/O, spin, insert PFN in
global LRU list

Run another green thread

P4 cgroup accounting, reclaim mem-
ory if past limit

I/O completion, context-
switch back

P5 Set page mapping, unlock —

0 5 10 15
Time [µs; median]

AIFM

Linux

HW limit P1 P2 P3 P4 P5

Figure 2: Linux kernel-based swapping has high overheads
over hardware I/O limits (blue line, 6µs). Both Linux and
AIFM use an SSD device backend in this experiment.

Application

Remoteable Datastructures (array, hashtable, ...)

AIFM Runtime

Local Memory
Memory
Evacuator

AIFM RT DS code

C++ STL API

RT API

Remote Server

Figure 3: Applications use remoteable data structures (gray),
and data structure developers rely on the AIFM runtime (yel-
low) to handle local memory management and interact with
remote memory. Data structures can have active remote com-
ponents (i.e., the “DS code” box) to offload light computation.

4 AIFM Design
The goal of Application-Integrated Far Memory (AIFM) is
to provide an easy-to-use, efficient interface for far memory
without the overheads of page-granular far memory.

4.1 Overview
AIFM targets two constituencies: application developers and
data structure developers. AIFM provides application devel-
opers with data structures with familiar APIs, allowing devel-
opers to treat these remoteable data structures mostly as black
boxes; and AIFM provides simple, but powerful APIs to data
structure engineers, allowing them to implement a variety of
efficient remoteable memory data structures. Figure 3 shows
a high-level overview of AIFM’s design: applications interact
with data structures (gray) implemented using primitives and
APIs provided by the AIFM runtime (yellow).

For an application developer, programming applications
that use far memory should feel almost the same as program-
ming with purely local data structures. In particular, the de-
veloper should not need to be aware of whether an object is
currently local or remote (i.e., far memory is transparent),
and remoteable memory data structures should offer the same
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performance as local ones in the common case. For example,
idiomatic C++ code for reading several hash table entries and
an array element computed from them might look as follows:

std::unordered_map<key_t, int> hashtable;
std::array<data_t> arr;

void print_data(std::vector<key_t>& request_keys) {
int sum = 0;
for (auto key : request_keys) {
sum += hashtable.at(key);

}
std::cout << arr.at(sum) << std::endl;

}

The same code written using AIFM looks like this:

RemHashtable<key_t, int> hashtable;
RemArray<data_t> arr;

void print_data(std::vector<key_t>& request_keys) {
int sum = 0;
for (auto key : request_keys) {
DerefScope s1; // Explained in Section 4.2.2.
sum += hashtable.at(key, s1);

}
DerefScope s2;
std::cout << arr.at(sum, s2) << std::endl;

}

The remoteable memory data structures themselves
(RemHashtable and RemArray above) are written by data
structure engineers, who use AIFM’s runtime APIs to in-
clude remoteable memory objects in their data structures.
When memory becomes tight, AIFM’s runtime moves some
of these memory objects to remote memory; when the data
structure needs to access remote objects, the AIFM runtime
fetches them. Data structure engineers have substantial de-
sign freedom: they can rely entirely on AIFM to fetch remote
objects, or they can deploy custom logic on the remote side.

Remote servers store the actual remote data in their mem-
ory, and run a counterpart AIFM runtime, which may call
into custom data structure logic. This is helpful, e.g., if the
remoteable memory data structure needs to chase pointers,
which would otherwise require multiple round-trips.

4.2 Remoteable Memory Abstractions
AIFM is designed around four core abstractions: remoteable
pointers, dereference scopes, evacuation handlers, and remote
devices. We designed the abstractions such that they impose
minimal overheads (as low as three micro-ops) on “hot path”
access to local objects, and try to ensure that the “cold path”
remote access incurs little latency above hardware limits.

4.2.1 Remoteable Pointers

A remoteable pointer represents a memory object (i.e., an
allocation) that is currently either local, or remote (in “far”
memory). AIFM supports unique and shared remoteable point-
ers, whose interface makes them suitable for use in any place
where a data structure would use an ordinary, local pointer.

H P S D E Object Data Address (47b)

0· · ·4647· · ·535455· · ·63

(a) Local object. H: hot, P: present, S: shared, D: dirty, E: evacuating.

DS ID (8b) 1 S Object Size (16b) Object ID (38b)

0· · ·3738· · ·53545556· · ·63

(b) Remote (swapped-out) object. DS ID means data structure ID.

Figure 4: Remoteable unique pointer representations for local
and remote objects. AIFM inverts the H/P/D bit meaning (0 =
hot/present/dirty) for a more efficient hot path execution.

Memory representation. Unique remoteable pointers,
which correspond to C++’s std::unique_ptr, have the same
size as ordinary 64-bit pointers, while shared pointers are
128-bits wide (like std::shared_ptr). Figure 4 shows the
memory layout of a remoteable unique pointer. Depending
on whether a remoteable pointer is local or remote, we adopt
a different format. If the memory is local (Figure 4a), the
pointer contains a virtual memory address in its lower 47 bits
(enough to represent user-space addresses), and control bits in
the upper 17 bits, including standard dirty (D) and present (P)
bits (cf. page tables). It also contains bits to track whether the
pointer is hot (H) and whether it is being concurrently evac-
uated (E). For unique pointers, the shared (S) bit is set to 0.
We byte-align the D, E, and H bits, allowing each of them to
be accessed by mutators and runtime evacuators concurrently
and atomically, as a byte is the smallest read/write unit.

If the memory is remote (Figure 4b), it contains metadata to
assist in retrieving the object from remote memory, such as the
data structure ID, the object size, and the object ID. Each data
structure instance has a unique data structure ID managed by
the runtime. The object ID refers to a data structure-specific
object identifier (such as a key in a hash table), which is used
by the remote memory server to identify the object.

AIFM’s remoteable shared pointer, which allows pointer
aliasing and corresponds to C++’s std::shared_ptr differs
from the unique pointer in two ways. First, its S bit is set to 1;
and second, the pointer has an additional 8 bytes for chaining
the shared pointers to the same object. When AIFM’s runtime
evacuates the referred object or moves it locally (§5.3), it
traverses the chain to update all shared pointers.

API. Listing 1 shows the API of the remoteable unique
pointer (the shared pointer’s API is largely identical).
RemUniquePtr has two constructors: one for already-local
objects and one for currently remote objects. The second con-
structor allows data structures to form remoteable pointers
to objects that are currently remote. This helps data structure
engineers reference remote objects from their data structures
without having to fetch those objects.

To turn a remote pointer into a local one, the programmer
dereferences it via the deref and deref_mut API methods.
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class RemUniquePtr<T> {
uint64_t metadata; // 64 bits, see Figure 4.
// Construct local object
RemUniquePtr(DSID, T* obj_addr);
// Construct remote object
RemUniquePtr(DSID, ObjID);
const T* deref(DerefScope& scope); // Immutable.
T* deref_mut(DerefScope& scope); // Mutable.

}

Listing 1: AIFM remoteable unique pointer API.

Dereferencing. When the dereferencing methods are
called, the runtime inspects the present bit of the remoteable
pointer. If the object is local, it sets the hot bit and returns the
address stored in the pointer. Otherwise, the runtime fetches
it from the remote server, sets the hot bit and dirty bit (in
deref_mut), and returns a local pointer to the data.

AIFM’s hot path for local access is carefully optimized
and takes five x86-64 machine instructions: one mov to load
the pointer, one andl to check present and evacuating bits,
a conditional branch to the cold path if neither is set, a shift
(shrq) to extract the object address, and a mov to return it.
Modern x86-64 processors macro-fuse the second and third
instructions (test and branch), so the hot path requires four
micro-ops, a three-micro-op overhead over an ordinary pointer
dereference. The cold path is slower, as it calls into the AIFM
runtime to potentially swap in a remote object.

One challenge to making this API work is managing the
local lifetime of the dereferenced data: while the application
holds a pointer returned from dereferencing a RemUniquePtr,
the runtime must never swap out the object. This is hard to
achieve in unmanaged languages like C/C++, since after get-
ting the raw address, application code could store it virtually
anywhere (e.g., on the heap, stack, or even in registers). The
runtime lacks sufficient information to detect whether any
such pointer continues to exist, and thus whether the data is
still being used. The Boehm garbage collector [13] tackles a
similar reference lifetime problem by scanning the whole ad-
dress space to find any possible references. Such scans would
impose an unacceptable performance overhead for AIFM.
Our solution is to instead leverage application semantics to
tie the lifetime of the local, dereferenced data to the lifetime
of the AIFM’s dereference scopes.

4.2.2 Dereference Scopes

Listing 2 demonstrates the usage of DerefScope. Before ac-
cessing the remoteable object, the developer must construct a
DerefScope. AIFM container’s API provides a compile-time
check by taking a DerefScope& argument. (This is also why
the remoteable pointer has its own dereferencing methods,
rather than overloading operator*.)

Under the hood, DerefScope’s constructor creates an evac-
uation fence, which blocks upcoming evacuations until it is
destructed. The lifetime of all local dereferenced data is there-
fore tied to the scope lifetime. Accessing dereferenced data

RemVector<value_t> vec;
// ...
for (uint64_t i = 0; i < vec.size(); i++) {
{

DerefScope scope;
auto& value = vec->at(i, scope);
// process value

}
// scope destroyed, can evacuate value’s object

}

Listing 2: AIFM dereference scope example.

outside the dereference scope is undefined behavior. In the
future, AIFM might leverage static analysis to catch lifetime
violations, as in the Rust compiler [78].

Our scope API is familiar to C/C++ programmers; it
shares similarity with C++11’s std::weak_ptr and, e.g., the
rcu_reader guard in Facebook’s RCU API [26]. Note that
the lifetime of the DerefScope is separate from the lifetime
of the remoteable pointer: a remoteable pointer may still be
alive even when its data has been swapped to the remote.
This is unlike, e.g., std::unique_ptr, where the pointer’s
destructor terminates the lifetime of the object data.

Dereference scopes require developers to modify the appli-
cation code. An alternative API might avoid the need for a
dereference scope at the cost of copying the object into local
memory on dereference. AIFM’s core APIs aim to achieve
maximum performance, so we avoid copying by default. The
overhead of a copying API is highly application-dependent;
our experiments suggest that 3–8% overhead are typical for
applications with high compute/memory access ratios.

4.2.3 Evacuation Handlers

When an object is not protected by a DerefScope, AIFM’s
runtime may evacuate it to far memory. Evacuation changes
the pointer to this object from local to remote status, and fu-
ture dereferences will cause AIFM to swap the object back
in. But some use cases may wish to implement custom be-
havior on evacuation. For example, when AIFM evacuates an
object contained in a hash table, the hash table may register
an evacuation handler to remove the key and object pointer
to save local space. (In this case, future lookup misses for
the key will reconstitute the key and pointer, and add them
to the hash table.) AIFM offers evacuation handlers for this
purpose, enabling developers to incorporate the data structure
semantics into the runtime evacuator.

Evacuation handlers are also critical for handling embed-
ded remoteable pointers inside objects. For example, data
structure engineers can use evacuation handlers to support
embedded remoteable unique pointers in objects that are them-
selves remoteable. When an object is remoted, any embedded
remoteable pointers must either be moved to the local heap, or
the object it references must be moved to remote memory, and
the remoteable pointer must be updated with an identifier to
later retrieve the remote object from a remote device (§4.2.4).
As a result, the evacuator never has to retrieve remote memory
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// The AIFM runtime will invoke the handler on evacuating
// the object to the remote server (phase 4 in Section 5.3).
using EvacHandler = std::function<

void(Object&, const Runtime::CopyToRemoteFn&)>;
// Registers an evacuation handler for a data structure ID.
void Runtime::RegisterEvacHandler(DSID id, EvacHandler h);

Listing 3: AIFM evacuation handler API.

to update a remoteable pointer.
AIFM provides an evacuation handler API (Listing 3). The

evacuation handler gets invoked on evacuating the object to
the remote server (phase 4 in §5.3), right before the runtime
frees the object’s local memory. The runtime passes two argu-
ments to EvacHandler—the object to be evacuated and the
function that triggers the runtime to copy the object to the
remote side. The first argument allows the handler to mutate
the object data before copying (e.g., modify the state of its em-
bedded pointers) and further cleanup the local data structure
after copying (e.g., remove its pointer from the hash table in-
dex). The second argument offers the flexibility in the timing
of copying the object to remote.

Data structure developers register their evacuation handlers
by invoking RegisterEvacHandler. An evacuation handler
is tied to a unique data structure ID, which each data structure
allocates in its constructor, and which data structure engineers
must use consistently. This way, different data structures or
instances of the same data structure coexist in the same appli-
cation, while the runtime invokes the appropriate handler.

4.2.4 Remote Devices

AIFM’s RemDevice provides functionality at the remote mem-
ory server (Listing 4). The remote device, by default, uses a
key-value store abstraction: when the client dereferences a
remote pointer, the runtime sends the data structure ID and
object ID to the remote server, which looks up the object by
data structure ID and object ID, and sends the object data
back. When evacuating an object, the runtime sends IDs and
object data to the remote server, which inserts the object.

AIFM also gives datastructure engineers the flexibility to
override this default behavior to integrate custom active com-
ponents at the remote server. This is accomplished by register-
ing their implementation on their own data structure type to
the remote device (register_active_component). A cus-
tom active component is especially beneficial when the appli-
cation’s compute intensity is low, as this setting often makes
it more efficient to perform operations on remote memory
than paying the cost of bringing the objects into local mem-
ory. After registering the active component at the remote, data
structure engineers invoke RemDevice’s client-side bindings
to interact with the remote components. They use construct
and destruct to instantiate and destroy remote components.
If an object is not present when dereferencing a remote pointer,
the runtime invokes the read_obj to swap in the missing ob-
ject. On evacuation, the evacuator invokes write_obj to swap
out cold objects and delete_obj to release dead objects. In

class RemDevice {
void register_active_component(DSType, ActiveComponent&);
DSID construct(DSType, ByteArray params);
void destruct(DSID);
void read_obj(DSID, ObjID, ByteArray& obj_data);
void write_obj(DSID, ObjID, ByteArray obj_data);
bool delete_obj(DSID, ObjID);
void compute(DSID, OpCode, ByteArray in, ByteArray& out);

};

Listing 4: AIFM remoteable device API.

addition, the compute method invokes a custom function, ex-
ecuting a lightweight computation on the remote server. This
is useful, for example, for efficiently aggregating a sum across
objects in a data structure without wasting network bandwidth
to bring all objects into local memory first.

We implemented remote active components to improve the
performance of hashtables (§8.2.1) and DataFrames (§8.1.2).

4.2.5 Semantic Hints

AIFM’s APIs allow injecting information about application-
and object-specific semantics into the runtime.

Hotness tracking. To dereference a remoteable pointer, the
user invokes our library, which sets the hot bit of the pointer.
Under memory pressure, the memory evacuator uses this hot-
ness information to ensure that frequently accessed objects are
local. On evacuation, the evacuators clear the hot bit. AIFM
initialization allows developers to customize the number of
hot bits to use in the pointer (up to eight) and the replace-
ment policy by data structure ID. With several hot bits, AIFM
supports, e.g., a CLOCK replacement policy [72].

Prefetching. AIFM includes a library that data structures
can use to maintain a per-thread window of the history of
dereferenced locations and predict future accesses using a
finite-state machine (FSM). It updates the window and the
FSM on each dereference. The FSM detects patterns of se-
quential access and strided access. When a pattern is detected,
it starts prefetcher threads that swap in objects from the re-
mote server. With enough prefetching, application threads
always access local memory when dereferencing remoteable
pointers. The library estimates the prefetch window size con-
servatively using the network bandwidth-delay product. Data
structure engineers can also add custom prefetching policies.

Nontemporal Access1. For remoteable pointers to objects
without temporal locality, it makes sense to limit the local
memory used to store their object data. This avoids pollut-
ing local memory, which multiple data structures may share,
with data that a data structure engineer knows is unlikely
to be accessed again. To achieve this, AIFM’s pointer API
supports non-temporal dereferences (Listing 5). This im-
mediately marks the object pointed to by rmt_ptr as re-
claimable, though the actual evacuation happens only after the

1We use “nontemporal” in the sense of x86’s nontemporal load/store in-
structions [35], which conceptually bypass the CPU cache to avoid pollution.
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DerefScope scope;
// non-temporal dereference ⇓ allows immediate reclaim
T* p1 = rmt_ptr1.deref_mut<true>(scope);
// temporal deref; deref_mut(scope) works too
T* p2 = rmt_ptr2.deref_mut<false>(scope);

Listing 5: Non-temporal and temporal dereferences.

DerefScope ends. Without a hint, a dereference is temporal
by default; §8.1.1 evaluates the benefit of the hint.

5 AIFM Runtime
AIFM’s runtime is built on “green” threads (light-weight,
user-level threading), a kernel-bypass TCP/IP networking
stack, and a pauseless memory evacuator. Applications link
the runtime into their user-space process. This allows us to
co-design the runtime with AIFM’s abstractions and provides
high-performance far memory without relying on any OS
kernel abstractions.

Two high-level objectives guide our runtime design: (i) the
runtime should productively use the cycles spent waiting dur-
ing the inevitable latency when fetching objects from remote
memory; and (ii) application threads should never have to
wait for the memory evacuator.

5.1 Hiding Remote Access Latency
We want to hide the latency of fetching data from far memory
by doing useful work during the fetch.

Existing OS kernel threads pay high context-switching
costs: e.g., on Linux, rescheduling a task takes around 500ns.
These costs are a nontrivial fraction of remote memory latency,
so Linux and Fastswap adopt a design where they busy-spin
while waiting for a network response [6]. This avoids context-
switch overheads, but also wastes several microseconds of
processing time. This approach also places tremendous pres-
sure on network providers to support even lower latency to
reduce the amount of wasted cycles [9, 28]. AIFM takes a
different approach: it relies on low-overhead green threads to
do application work while waiting for remote data fetches.

Consistent with literature on garbage collection (GC), we
refer to normal application threads as mutator threads in the
following. Each mutator thread accesses far memory, block-
ing whenever it needs to fetch a remote object. When that
happens, another mutator thread can run and make produc-
tive use of available CPU cycles. Moreover, AIFM’s runtime
spawns prefetcher threads to pull in objects that it predicts will
be dereferenced in the future, allowing it to avoid blocking
mutator threads when the predictions are correct.

Using green threads, AIFM tolerates network latency with-
out sacrificing application-level throughput, wasting fewer
cycles than systems that busy-poll for network completion.

5.2 Remoteable Memory Layout
For the local memory managed by AIFM, its runtime em-
braces the idea of log-structured memory [63], which splits
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Figure 5: The layout of local remoteable memory in AIFM.
There are three global lists: a free list, a temporal used list, and
a non-temporal used list. Each list stores many logs, and each
log stores many objects. There is a per-core allocation buffer
(PCAB) that keeps two free logs to allocate new objects, one
log for temporal objects, the other for non-temporal ones.

and manages the local remoteable memory in the granularity
of logs (Figure 5). The log size is 2MB, which helps reduce
TLB misses by allocating huge pages. The runtime maintains
three global lists: a free list, a non-temporal used list, and a
temporal used list. Each list stores many logs. For core scala-
bility, each core owns two logs for new allocations: one log
for temporal objects, the other for non-temporal ones. The
logs are kept in a per-core allocation buffer (PCAB). To allo-
cate an object, the runtime first tries to allocate from a log in
the PCAB. If that log runs out of space, the runtime appends
the log to the global non-temporal or temporal used list, and
obtains a new log from the global free list. To free an object,
the runtime marks the object as free. AIFM leverages a mark-
compact evacuator to achieve a low memory fragmentation
ratio, as shown with other copying log allocators [63].

A log has a 1B header indicating whether it stores non-
temporal or temporal data. The remaining space stores ob-
jects. Each object has a Hdr Len bytes header and a Data
Len bytes data. The 6-byte Head Ptr Addr stores the ad-
dress of the remoteable pointer that points to the object. For
a unique pointer, Head Ptr Addr stores the address of the
only pointer; for a shared pointer, it stores the address of the
first shared pointer in the chain. Dead objects have Head Ptr
Addr set to nullptr. The variable-sized Object ID stores
the object’s unique identifier. The header is used on evacua-
tion, when the runtime passes the object ID to write/delete
endpoints on the remote device and the remoteable pointer ad-
dress to the evacuation handler, and when the runtime swaps
in an object and passes the object ID to the remote device.

5.3 Pauseless Memory Evacuator
Upon memory pressure, the runtime’s memory evacuator
moves cold objects to the remote server. Like with many
garbage collectors in managed languages, a key feature of
AIFM is to allow mutator threads to run concurrently while
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the runtime evacuates local memory. The evacuator executes
four phases in sequence, described in the following para-
graphs. To ensure correctness under race conditions, the evac-
uator maintains an invariant: it only starts to move object
O after setting the mutator-side synchronization barrier on
accessing O. The evacuator sets the barrier by setting the
pointer evacuation bit (phase 2). The RCU writer wait (phase
3) ensures all mutators have observed the set bits to enforce
the timing order in the invariant.

1. Log Selection Phase. The goal of the evacuator is to
maintain the local free memory ratio above the min_free_ratio
(0.12 by default). The master thread of the evacuator picks
total_log_cnts ·(current_free_ratio−min_free_ratio) of logs
to be evacuated. The evacuator picks logs in FIFO order
from the global non-temporal used list, and then picks from
the global temporal used list if necessary, to prioritize non-
temporal objects. AIFM could also use more sophisticated
schemes, e.g., prioritizing logs by occupancy and age [23].

2. Concurrent Marking Phase. The master evacuation
thread spawns worker threads and divides the previously-
selected logs among them. Each worker thread iterates
through the objects in its logs to find live objects. For each
such object, the worker sets the evacuation bit of all remote-
able pointers of the object by traversing the pointer chain
starting from the head pointer address (i.e., the Head Ptr
Addr field). This marks the object for evacuation.

3. Evacuator Waiting Phase. The runtime can evacuate
objects only when they are not being dereferenced by mutator
threads. Rather than following a naive approach of having mu-
tators and the evacuator to acquire a per-object lock—which
would impose high overhead on the hot path of mutators ac-
cessing local objects—AIFM uses an approach inspired by
read-copy-update (RCU) synchronization. AIFM’s runtime
treats mutators as RCU readers and the evacuator master
thread as an RCU writer, thereby moving the synchronization
overhead to the evacuator. This choice makes sense because
(i) the mutators do application work, so AIFM should steer
overhead away from them; and (ii) evacuation is a rare event.
The result is that the evacuator master thread waits for a qui-
escent period to ensure all mutator threads have witnessed the
newly-set evacuation bits.

If a mutator thread subsequently dereferences a pointer to
an object that the runtime is evacuating, the mutator sees that
the evacuation bit is set. A naive approach would now block
the mutator thread while the evacuation bit is set. Instead,
AIFM opts for an approach that avoids such pauses: the mu-
tator copies the object to another log in its PCAB, and then
executes a compare-and-swap (CAS) on the head remoteable
pointer (which serves as a synchronization point) to simulta-
neously clear the evacuation bit, set the present bit, and set the
new data location. This CAS will race with the evacuator (see
next phase below). If the CAS succeeds, the mutator copied
an intact object, so it obtains a local reference. The mutator
then updates all pointers in the pointer chain with the head

pointer metadata and continues executing. If the CAS fails,
the evacuator has already changed the remoteable pointer to
remote status, so the mutator’s copy of the object may be
corrupt. Consequently, the mutator frees the copy it made and
obtains a remote reference.

4. Concurrent Evacuation Phase. The master thread
spawns more worker threads to evacuate objects and run
their evacuation handlers. Again, the master divides the previ-
ously selected logs among the workers. Each worker iterates
through each log and each object within the log. For each cold
object, the worker copies the object to the remote and executes
a CAS on the head remoteable pointer to simultaneously clear
the presence bit and set the remote pointer metadata. If the
CAS succeeds, the object has been evacuated, and the worker
updates all pointers in the pointer chain with the head pointer
metadata and invokes the evacuation handler. Otherwise, a
mutator thread succeeded with a racing CAS and has copied
the object to another location. Either way, the log entry is now
unused and reclaimable. For each hot object, the worker com-
pacts and copies it into a new log, updates the object address
in the remoteable pointers, and resets the hot bits.

5.4 Co-design with the Thread Scheduler
Evacuation is an urgent task when the runtime is under mem-
ory pressure. With a naive thread scheduler, evacuation can
be starved by mutator threads, leading to out-of-memory er-
rors and application crashes. There are two challenges that
we need to address. First, a large number of mutator threads
may allocate memory faster than evacuation can free memory.
Second, evacuation sometimes blocks on mutator threads in a
dereference scope, and this creates a dilemma. On one hand,
the scheduler needs to execute mutator threads so they can
unblock evacuation. On the other hand, executing mutator
threads may consume more memory.

To address these issues, we co-design the runtime’s green
thread scheduler with AIFM to prioritize the activities neces-
sary for evacuation, both in mutator threads and evacuation
threads. First, each thread keeps a status field that is set by the
AIFM runtime and read by the scheduler, which allows the
scheduler to know whether a thread is in a dereference scope.
The scheduler runs a multi-queue algorithm and assigns the
first priority to mutators in a dereference scope, second prior-
ity to evacuation threads, and third priority to other mutator
threads. Second, to avoid priority inversion [42] when the sys-
tem is short of memory, the allocation function in the AIFM
runtime triggers a signal to all running threads to force them
to yield their cores back to the scheduler for re-scheduling.

6 Remoteable Data Structure Examples
We implemented six remoteable AIFM data structures.

Array. The remoteable array consists of a native array of
RemUniquePtrs. Each pointer points to an array element to
enable fine-grained data placement decisions. Alternatively,
users can configure the pointed object as multiple consecutive
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array elements to reduce the memory overhead of pointer
metadata. The object IDs of pointers are their remote-side
object addresses. The prefetcher records accessed indices at
all array access APIs; it starts prefetching when detecting a
strided access pattern.

Vector. The remoteable vector is similar to the remote-
able array except that it is dynamically sized, and uses a
std::vector to store RemUniquePtrs. Additionally, the
vector has an active remote component that supports offload-
ing operations like copies and aggregations, which are used
by the DataFrame application (§8.1.2).

List. The remoteable list is similar to the remoteable vector,
except that it uses a local list that stores RemUniquePtrs
to support efficient insert and erase operations. The list
supports traversals in forward and reverse directions, which
offers strong semantic hints to the prefetcher. When detecting
a direction, the prefetcher walks through the local list in the
same direction to prefetch remote list objects.

Stack and Queue. The remoteable stack and queue are
simple wrappers around remoteable lists.

Hashtable. The remoteable hashtable consists of a table
index (stored on the local heap) and key-value data (stored
in AIFM’s remoteable heap). In the index, each hash bucket
stores a RemUniquePtr to a key-value object. The object IDs
of pointers are their hashtable keys. The hashtable has an
active remote component that maintains a separate hashtable
in remote memory. In this architecture, the local hashtable is a
cache (inclusive or exclusive) of its remote counterpart. When
the referenced object is missing from the local cache, the ac-
tive remote component assists the chain lookup at the remote
hashtable to avoid multiple network round-trips. Data struc-
ture engineers might also realize different hashtable designs
via AIFM’s APIs.

7 Implementation
AIFM’s implementation consists of the core runtime library
(§5) and the data structure library (§6). The core runtime is
built on top of Shenango [55] to leverage its fast user-level
threading runtime and I/O stack. AIFM is written in C and
C++, with 6,451 lines in the core runtime, 5,535 lines in the
data structure library, and 750 lines of modifications to the
Shenango runtime. The system runs on unmodified Linux.

We integrated two far memory backends into AIFM: a re-
mote memory server based on a DPDK-based TCP stack, and
an NVMe SSD using an SPDK-based storage stack. Unlike
the remote memory backend, the SSD backend does not sup-
port active remote components (since the storage drive does
not have a general compute unit), and it has an inherent I/O
amplification because it is limited to a fixed block size. Our
evaluation focuses on the remote memory backend.

The current implementation has some limitations. First, we
do not support TCP offloading or RDMA, which would reduce
CPU overhead of our runtime. Second, a local compute server

connects to a single remote memory server, and the remote
memory cannot be shared by different clients. Finally, the
local and remote memory size cannot be changed at runtime.
We plan to address them in the future.

8 Evaluation
Our evaluation of AIFM seeks to answer three questions:

1. What performance does AIFM achieve for end-to-end
applications, including ones that combine multiple re-
moteable data structures? (§8.1)

2. How does AIFM’s performance compare to a state-of-
the-art far memory system, Fastswap [6]? (§8.1–§8.2)

3. What factors contribute to AIFM’s performance? (§8.3)

Setup. We run experiments on two xl170 nodes on Cloud-
Lab [25] with 10-core Intel Xeon E5-2640 v4 CPUs (2.40
GHz), 64GB RAM, and a 25 Gbits/s Mellanox ConnectX-4
Lx MT27710 NIC. We enabled hyper-threads, but disabled
CPU C-states, dynamic CPU frequency scaling, transparent
huge pages, and kernel mitigations for speculation attacks
in line with prior work [55]. We use Ubuntu 18.04.3 (ker-
nel v5.0.0) and DPDK 18.11.0, except for experiments with
Fastswap, which use Linux kernel v4.11, the latest version
Fastswap supports. All AIFM experiments use the default
configuration settings and the default built-in prefetchers of
remoteable data structures. We do not tune prefetching policy
specifically for evaluated applications.

8.1 End-to-end Performance
We evaluate AIFM’s end-to-end performance with two appli-
cations. First, we designed a synthetic application that mimics
a typical web service frontend to understand AIFM’s perfor-
mance with multiple remoteable data structures and the im-
pact of semantic hints. Second, we also ported an open-source
C++ DataFrame library [16] with an interface similar to Pan-
das [56] to AIFM, and use it to understand the porting effort
required and AIFM’s performance for an existing application.

8.1.1 Synthetic Web Service Frontend

In response to client requests, the application fetches struc-
tured data (e.g., a list of user IDs) from an in-memory key-
value store, and then uses the retrieved values to compute
an index into a large collection of 8KB objects (e.g., profile
pictures). Finally, the application fetches one 8KB object,
encrypts it, and compresses it for the response to the client.

This application uses our remoteable hashtable (for the key-
value pairs) and our remoteable array (for the 8KB objects).
Each client request looks up 32 keys in the hashtable and
fetches a single 8KB array element. We load the hashtable
with 128M key-value pairs (10GB total data, of which 6GB
are index data and 4GB are value data), and create an array of
2M objects of 8KB each (16GB total). The two data structures
share 5GB of available local memory, i.e., the local memory
size is 19% of the total data set size. We generate closed-loop
client requests from a Zipf distribution with parameter s: a uni-
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Figure 6: In a web frontend-like application with a hashtable and array, AIFM outperforms Fastswap by 20× (a) and achieves
90% of local memory performance with 5× less memory (b), as non-temporal array access avoids polluting local memory (c).
“AIFM(NT)”: non-temporal access; “AIFM(T)”: temporal access; “Local Only”: entire working set in local memory.

form distribution corresponds to s = 0, while values of s close
to 1 indicate high skew. Each request accesses Zipf-distributed
keys in the hashtable and uses their values to calculate an (also
Zipf-distributed) array index to access; the request then en-
crypts the array data via AES-CBC using crypto++ [22] and
compresses the result using Snappy [30]. We compare two
AIFM settings—with and without non-temporal dereferences
for array elements—against Fastswap [6] and an idealized
baseline with all 26GB in local memory. A good result for
AIFM would show improved performance over Fastswap, a
benefit to non-temporal array accesses, and performance not
much lower than keeping the entire data in local memory.

Figure 6a shows a throughput-latency plot for a Zipf pa-
rameter of s = 0.8 (i.e., a skewed distribution). The x-axis
shows the offered load in the system, and the y-axis plots
the measured 90th percentile latency. Each setup eventually
encounters a “hockey-stick” when it can no longer keep up
with the offered load. Fastswap tolerates a load of up to 19k
requests/second, but its overheads and the amplification for
the hashtable lookups quickly dominate. AIFM with a tem-
poral array dereference scales 7× further, but fails to keep
up beyond 140k requests/second because the 8KB array ac-
cesses pollute its local memory. To make room for an 8KB
array element, the runtime often evicts hundreds of hashtable
entries, causing a high miss rate on hashtable lookups. AIFM
with non-temporal access to the array, however, scales to
370k requests/second (20× Fastswap’s maximum through-
put). This is 16% lower throughput than the 440k request-
s/second achieved by an idealized setup with 26GB in local
memory. In other words, AIFM achieves 84% of the perfor-
mance of an entirely local setup with 5× less local memory.

Additional local memory helps bring AIFM performance
closer to the in-memory ideal. Figure 6b shows the percent-
age of the all-local memory throughput achieved by the non-
temporal version of AIFM when varying the local memory

size (on the x-axis, as a fraction of 26GB). While Fastswap’s
throughput starts near zero and grows roughly in proportion to
the local memory size, AIFM’s throughput starts at 30% of the
ideal and quickly reaches 85% of the in-memory throughput
at 5.0GB local memory (20% of 26GB).

Figure 6c illustrates why this happens. At the left-hand
side of the plot (5% local memory), AIFM sees high miss
rates in both hashtable (52%) and array (89%). But as local
memory grows, the hashtable miss rate quickly drops to near-
zero, since AIFM’s non-temporal dereferences for the array
ensure that most of the local memory is dedicated to hash
table entries. Correspondingly, the array miss rate drops more
slowly and in proportion to the local memory available. By
contrast, Fastswap (not shown here) has high miss rates in
both data structures, as its page-granular approach manages
local memory inefficiently.

8.1.2 DataFrame Application

The DataFrame abstraction, popularized in Pandas [56], pro-
vides a convenient set of APIs for data science and ML work-
loads. A DataFrame is a table-structured, in-memory datas-
tructure exposing various slicing, filtering, and aggregation
operations. DataFrames often have hundreds of columns and
millions of rows, and their full materialization in memory
often pushes the limits of available memory on a machine [54,
57, 60]. By making remote memory available, AIFM can
help data scientists interactively explore DataFrames without
worrying about running out of memory.

We ported a popular open-source C++ DataFrame li-
brary [16] to AIFM’s APIs. The primary data structure used
in the library is an std::vector storing DataFrame columns
and indexes, and we replaced this vector with the AIFM-
enabled equivalent. In addition, we also added support for
offloading key operations with low compute intensity but high
memory access frequency to the remote side. We achieve this
by offloading three operations using AIFM’s remote device
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Offloaded Rem. Dev. Operations
Copy Shuffle Aggregate
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Filter 3
Range extraction 3

Add column/index 3
Sort by column 3

GroupBy 3 3

Table 1: DataFrame APIs (rows) and the offloaded operations
they use via AIFM’s remote device API (columns). Copy
and Shuffle are memory-only operations, while Aggregate
performs light remote-side computation.
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Figure 7: An AIFM-enabled DataFrame library [16] achieves
78–97% of in-memory throughput for a data analytics work-
load [53], outperforming Fastswap. Offloading operations
with low compute intensity is crucial to AIFM’s performance.

API (§4.2.4). The Copy and Shuffle operations copy a vector
(i.e., a DataFrame column), with shuffle also reordering rows
by index positions in another column; Aggregate computes
aggregate values (sums, averages, etc.). These three opera-
tions are used in five DataFrame API calls, including filters,
column creation, sorts, and aggregations (Table 1). To achieve
coverage sufficient to run the New York City taxi trip anal-
ysis workload [53], we modified 1,192 lines of code in the
DataFrame library (which has 24.3k lines), and wrote 233
lines of remote device code. These modifications took one
author about five days.

We benchmark our AIFM-enabled DataFrame with the
Kaggle NYC taxi trip analysis workload [53], which explores
trip dimensions including the number of passengers, trip dura-
tions, and distances, on the NYC taxi trip dataset [74] (16GB).
The workload’s full in-memory working set is 31GB. In the
experiment, we vary the size of available local memory be-
tween 1GB and 31GB. We compare AIFM with Fastswap and
a baseline with all data in local memory. In addition, we also
investigate the impact of offloading on this workload, which
consists of an operation with low compute intensity (Aggre-
gate in Table 1) and some pure memory-copy operations
(Copy and Shuffle). We would hope to find AIFM outperform
Fastswap and come close to the local memory baseline.

Figure 7 shows the results. AIFM achieves 78% of in-
memory throughput even with 1GB of local memory (3.2%)
and exceeds 95% of ideal performance from about 20% (6GB)
local memory. Fastswap, by contrast, achieves only 20% of in-
memory performance at 1GB and only comes close to it once
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Figure 8: Performance gains from offloading the operations
in Table 1. AIFM benefits most from offloading Copy, which
increases throughput by 18–38%.

over 90% of the working set are in local memory. AIFM’s
high performance comes from avoiding Fastswap’s page fault
overheads, and from reducing expensive data movements over
network by offloading operations with low compute inten-
sity. Without offloading, AIFM outperforms Fastswap until
60% of the working set are local, as Fastswap incurs fre-
quent minor faults. Beyond 60%, the fault rate in Fastswap
drops sufficiently for most memory accesses to outperform
AIFM’s dereference-time overhead for low compute intensity
operations (e.g., memory copies). Offloading these operations
to the remote side helps AIFM avoid this cost, while high
compute-intensity operations amortize the dereference cost
and happen locally. We also prototyped a batched API for
AIFM that amortizes the dereference overhead across groups
of vector elements when offloading is not possible, and found
that it improves AIFM’s throughput without offloading to 60–
80% of in-memory throughput. We believe this could make a
good future addition to AIFM’s API to speed up low compute
intensity operations if they must be performed locally.

Figure 8 breaks down the effect of offloading. Offloading
Copy contributes the largest throughput gains (18%–38%); of-
floading shuffle contributes 2.9%–13%; and offloading Aggre-
gate contributes 4.5%–12%. These results show that AIFM
achieves high performance with small local memory for a
real-world workload, and that AIFM’s operation offloading
is crucial to good performance when a workload includes
operations with low compute intensity.

8.2 Data Structures
We pick two representative data structures—the hashtable
and the array—from §6. We evaluate them in isolation, and
explore the impact of prefetching, non-temporal local storage,
and read/write amplification-reducing techniques.

8.2.1 Hashtable

Hash tables provide unordered maps that typically see ran-
dom accesses, often with high temporal locality. A remoteable
hash table should benefit from temporal caching of popular
key-value (KV) pairs in local memory. Note that with AIFM,
the caching policy is controlled by the data structure engi-
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Figure 9: An AIFM hash table is competitive with local
memory when the access distribution is skewed (Zipf factors
≥ 0.8), and outperforms a hashtable in Fastswap by up to 61×
as Fastswap suffers from amplification and other overheads.

neer, while with Fastswap (or any swap-based far memory
system), the caching policy is determined by the kernel page-
reclamation policy, which in turn is based on page-granular
hotness information.

Comparison. We evaluate the hashtable over Fastswap and
AIFM with a memcached-style workload that issues GET re-
quests, with keys sampled from a Zipf distribution whose
parameter s we vary. Our key and value sizes are based on
those reported for Facebook’s USR memcached pool [8]. We
load the hash table with 128M KV pairs (10GB total data),
and compare performance to a baseline that keeps the entire
hash table in local memory. Fastswap and AIFM instead allow
a maximum of 5GB local data, split as follows. In Fastswap,
the OS manages the both hashtable index (6GB) and value
data (4GB) in swapable memory, with least recently used
(LRU) [77] eviction at page granularity to decide on remote
pages. In AIFM, we provision 3GB local memory region for
index data and the other 2GB local memory region for value
data; the runtime manages them separately. The hashtable’s
own object-granular CLOCK replacement algorithm guides
AIFM’s memory evacuator to pick KV pairs to evict to remote
memory. In this experiment, we use a hashtable configured as
an exclusive cache, i.e., the evacuation handler removes local
index entries for remote key-value pairs.

Figure 9 shows the throughput achieved as a function of
the Zipf parameter s, ranging from near-uniform at zero to
highly skewed at s = 1.35. AIFM achieves about 17M opera-
tions/second at low skew (≈ 60% miss rate at s = 0), about
one third of the 53M operations/second that a fully-local hash
table achieves. As skew increases and the miss rate drops,
AIFM comes closer to local-only performance: for example,
at s = 0.8 (1% miss rate), it reaches 57M operations/second;
and from s= 0.8, it matches the performance of the local-only
hashtable. Fastswap, by contrast, sees a throughput of 0.54M
operations/second at s = 0 (30× less than AIFM) and only
matches the local-only baseline beyond s = 1.3. At s = 0.8,
AIFM has its largest advantage over Fastswap (61×).
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(b) GET throughput as a function
of thread count (80% miss rate).

Figure 10: AIFM hash table microbenchmarks.

This difference comes from three factors against Fastswap:
(i) amplification due to page-granular swapping, (ii) lack of
per-KV pair hotness information, and (iii) the overheads of
kernel paging. Since a page contains 128 key-value pairs,
page-granular swapping incurs up to 128× read and write
amplification. This amplification increases the network band-
width required and pollutes the local memory, increasing
Fastswap’s miss rate with identical memory available. For
example, at s = 1.25, Fastswap still uses 140MB/s of net-
work bandwidth, while AIFM’s bandwidth use rapidly drops
beyond s = 0.8. Fastswap also cannot swap out only cold
key-value pairs, as a page contains entries with varying hot-
ness, but the kernel tracks access only at page granularity.
Finally, Fastswap incurs the cost of kernel crossings, page
faults, identifying and reclaiming victim pages (38% of cy-
cles at s = 0.8) and wasted cycles waiting for I/O (49%).
AIFM’s overheads are limited to running the evacuator (0.8%
of cycles at s = 0.8), TCP stack overheads (1.7%), and thread
scheduler overhead (14%).

Microbenchmarks. Figure 10a shows how hash table per-
forms at different miss rates when requests are uniformly,
rather than Zipf-distributed. It achieves a best-case through-
put of 53M requests/second, reduced to 10M requests/second
when it is close to 100% miss rate. Figure 10b measures,
for the same uniform distribution and an 80% miss rate, the
throughput AIFM achieves with an increasing number of ap-
plication threads. Up to 160 threads, AIFM extracts more
throughput by scheduling additional requests while it waits
for requests to complete.

8.2.2 Array

Depending on the access pattern, an array may benefit from
caching (for random access with temporal locality), prefetch-
ing (for sequential access), and non-temporal storage (if there
is no temporal locality).

We evaluate our array with the Snappy library [30]. The
benchmark performs in-memory compression/decompression
by reading input files from a RemArray and writing output
files to another RemArray. For benchmarking compression,
we use 16 input files of 1GB each. For decompression, we use
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Figure 11: AIFM achieves nearly identical performance to lo-
cal memory when compressing/decompressing an array with
Snappy [30] (sequential access), and outperforms Fastswap.

30 input files of 0.5GB each. The compression ratio is around
2. Both operations perform streaming, sequential access to
the array and never revisit any object. We compare Fastswap
and an ideal, completely local in-memory baseline.

AIFM’s array prefetcher captures application semantics
through the array access APIs and performs prefetching en-
tirely in user space. OS-based paging systems, by contrast,
must rely on page faults (major faults for unprefetched pages
and minor faults for prefetched pages) to pass application se-
mantics, which imposes high overheads. For each system, we
measure performance with different amounts of local memory
available (for Fastswap, we restrict memory via cgroups; for
AIFM, we set the local memory size). A good result would
avoid AIFM’s slow path, as every far pointer dereference
would find local data already.

Figure 11 shows the results. We see that AIFM achieves
performance close to the in-memory baseline, independent of
the local memory size, while Fastswap’s performance depends
on local memory size and only matches AIFM when nearly
all memory is local. This demonstrates the benefit of AIFM’s
non-temporal access and prefetching.

8.3 Design Drill-Down
We now evaluate specific aspects of the AIFM design using
microbenchmarks.

8.3.1 Fast/Slow Path Costs

AIFM seeks to provide access to local objects with latency
close to normal memory access. This means that AIFM’s
remoteable pointer must minimize overheads on the “fast
path”, when no remote memory access is required.

We measured the hot path latency of dereferencing a
RemUniquePtr and compared it to the latency for derefer-
encing a C++ unique_ptr, both when the pointer and data
pointed to are cached and uncached. Figure 12a shows that
AIFM offers comparable latency to an ordinary C++ smart
pointer. For an object in L1 cache, AIFM has a 4× latency
overhead: four micro-ops vs. a single pointer dereference oper-
ation. In practice, modern CPU’s instruction-level parallelism

90th percentile latency [cycles] read write
C++ unique_ptr (uncached) 570 408

AIFM object (uncached) 489 309

(a) Hot path (local object).

90th percentile latency [cycles] read write
Fastswap total 23,712 26,382

... of which
RDMA transfer (4KB) 16,521 16,521

Overheads 7,191 9,861
AIFM total (64B object) 18,582 18,369

... of which
TCP transfer (64B) 17,694 17,673

Overheads 888 696
AIFM total (4KB object) 27,183 27,279

... of which
TCP transfer (4KB) 26,055 26,121

Overheads 1,128 1,158

(b) Cold path (remote object).

Figure 12: AIFM is competitive with an ordinary pointer
dereference, and it has lower overheads than Fastswap.

hides some of this latency, and we observe a 2× throughput
overhead for L1 hits.

We also measured AIFM’s cold path latency, and com-
pared it to Fastswap’s. Fastswap always fetches at least 4KB
from the remote server, but its RDMA backend is faster
than AIFM’s TCP backend. This might amortize some of
the overheads associated with page-granular far memory that
Fastswap suffers from. A good result would show AIFM with
comparable latency to Fastswap for large objects (4KB), and
lower latency for small objects (64B).

Figure 12b shows the results. While Fastswap’s raw data
transfers are indeed faster than AIFM’s, AIFM achieves lower
latency for cache-line-sized (64B) objects due to its 10×
lower overheads. For 4KB objects, AIFM is close to Fastswap,
but has 10% higher latency on reads; AIFM with an RDMA
backend would come closer. In addition, AIFM can produc-
tively use its wait cycles, which yields a 1.8–6.8× throughput
increase over Fastswap (Figure 1).

8.3.2 Operating Point

AIFM is designed for applications that perform some compute
for each remoteable data structure access, as this compute
allows AIFM to hide the latency of far memory by prefetching.
But if an application has a huge amount of compute per data
structure access, AIFM will offer limited benefit over page-
granular approaches like Fastswap, despite their overheads.
We ran a sensitivity analysis with a synthetic application that
spins for a configurable amount of time in between sequential
accesses into a remoteable array. This should allow AIFM’s
prefetcher to run ahead and load successive elements before
they are dereferenced. We compare to Fastswap, which we
configure with the maximum prefetching window (32 pages).

Figure 13 shows the results, normalized to the benchmark
runtime against a purely in-memory array. AIFM becomes
competitive with local memory access from about 1.2µs of
compute between array accesses. Fastswap’s overheads amor-
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access at around 1.2µs of compute per sequential far memory
access (4KB object) in a microbenchmark, while kernel-based
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Figure 14: Pauseless evacuation is essential for low latency
accesses: a stop-the-world (STW) evacuator frequently en-
counters 10× higher latency as it swaps out objects.

tize more slowly—its line converges with AIFM’s around
50µs of compute per array access. This demonstrates that
AIFM supports efficient remote memory in a wider range of
applications than page-granular approaches like Fastswap.

8.3.3 Memory Evacuator

We evaluate two key aspects of AIFM’s memory evacuator
design: the choice to never pause mutator threads (§5.3) and
the thread scheduler co-design (§5.4).

Pauseless Evacuation. In this experiment, we run 10 muta-
tor threads (the number of physical CPU cores in our machine)
that keep entering the dereference scope, dereferencing and
marking dirty 4MB of data each time. Therefore, the run-
time periodically triggers memory evacuation. We compare
AIFM’s pauseless evacuator design to a stop-the-world mem-
ory evacuator, and measure the latency per mutator iteration
(4MB write). Figure 14 shows that a stop-the-world evacuator
design causes periodic mutator latency spikes up to 340ms. By
contrast, AIFM’s pauseless evacuator consistently runs an iter-
ation in about 25ms. (The tiny spikes of the pauseless line are
mainly caused by hyperthread and cache contention between
evacuators and mutators.) This confirms that a pauseless evac-
uator is essential to consistent application performance.
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Figure 15: Thread prioritization in the runtime is essential to
ensure that evacuation always succeeds. 12% free memory is
the threshold for AIFM to trigger evacuation.

Thread Scheduler Co-design. In this experiment, we run
100 mutator threads that each iterates to read 1MB of data
from a remoteable array and perform 20ms of computation.
We run AIFM with the scheduler’s thread prioritization (§5.4)
enabled and disabled, and measure the free local memory over
time. For a responsive system, local memory should never run
out entirely, and the evacuator should be able to free memory
fast enough to keep up with the mutators.

Figure 15 shows that the runtime without prioritization fails
to keep up and runs out of memory after around 0.7 seconds.
AIFM’s prioritizing scheduler, on the other hand, ensures that
sufficient memory remains available. This illustrates that the
benefit of co-locating thread scheduler and memory evacuator
in a user-space runtime.

9 Conclusion
We presented Application-Integrated Far Memory (AIFM),
a new approach to extending a server’s available RAM with
high-performance remote memory. Unlike prior, kernel-based,
page-granular approaches, AIFM integrates far memory with
application data structures, allowing for fine-grained partial
remoting of data structures without amplification or high over-
heads. AIFM is based on four key components: (i) the remote
pointer abstraction; (ii) the pauseless memory evacuator; (iii)
the data structure APIs with rich semantics; (iv) and the re-
mote device abstraction. All parts work together to deliver
high performance and convenient APIs for application devel-
opers and data structure engineers.

Our experiments show that AIFM delivers performance
close to, or on par with, local DRAM at operating points that
prior far memory systems could not efficiently support.

AIFM is available as open-source software at https://
github.com/aifm-sys/aifm.
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